
USDOT Region V Regional University Transportation Center

Traffic Signal Coordination and Queue Management in 

Oversaturated Intersection

University of Illinois at Urbana Champaign

University of Illinois at Urbana Champaign

University of Illinois at Urbana Champaign

Report Submission Date:

 

USDOT Region V Regional University Transportation Center

 

 

 

NEXTRANS Project No. 047IY02 

Traffic Signal Coordination and Queue Management in 

Oversaturated Intersection 

By 

Ali Hajbabaie  

PhD Candidate 

University of Illinois at Urbana Champaign 

ahajbab2@illinois.edu 

 

And 

 

Juan C. Medina 

PhD Candidate 

University of Illinois at Urbana Champaign 

jcmedina@Illinois.edu 

 

And 

 

Rahim F. Benekohal (PI) 

Professor 

University of Illinois at Urbana Champaign 

rbenekoh@illinois.edu 

 

Report Submission Date: March 18, 2011 

USDOT Region V Regional University Transportation Center Final Report 

Traffic Signal Coordination and Queue Management in 



DISCLAIMER 

Funding for this research was provided by the NEXTRANS Center, Purdue University 

under Grant No. DTRT07-G-005 of the U.S. Department of Transportation, Research and 

Innovative Technology Administration (RITA), University Transportation Centers Program. The 

contents of this report reflect the views of the authors, who are responsible for the facts and the 

accuracy of the information presented herein. This document is disseminated under the 

sponsorship of the Department of Transportation, University Transportation Centers Program, in 

the interest of information exchange. The U.S. Government assumes no liability for the contents 

or use thereof. 



 

USDOT Region V Regional University Transportation Center Final Report 

TECHNICAL SUMMARY 

NEXTRANS Project No 047IY02 Technical Summary - Page 1 
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Traffic Signal Coordination and Queue Management in Oversaturated 

Intersections 

Introduction 

Traffic signal timing optimization when done properly, could significantly improve network 

performance by reducing delay, increasing network throughput, reducing number of stops, or 

increasing average speed in the network. The optimization can become  complex due to large 

solution space caused by many combinations of different parameters that affect traffic 

operation. In this study three different methods are used to find near-optimal signal timing 

parameters in transportation networks. The methods are: Genetic Algorithms (GA), Evolution 

Strategies (ES), and Approximate Dynamic Programming (ADP). Each method is introduced, the 

signal timings associated with them are explained and some important measures of 

performance of the networks are determined and compared. One small network with 9 

intersections and one medium network with 20 intersections were used for evaluating the 

optimizations methods. Three general cases (Cases 1, 2, 3) are discussed in this report. For the 

small symmetric network, three levels of traffic loading are used (no overload, 10% overload 

and 20% overload). For the medium network (modified Springfield IL downtown network), two 

levels of entry volumes are used (750 and 1000 vehicle per hour per lane).  

Findings 

On the small network of nine oversaturated intersections GA and ES methods were use to find 

optimal solutions for three network loading conditions (no overloading, 10%, and 20% 

overloading). Also two variations of ADP (no eligibility traces and eligibility traces) and three 
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modified ADP algorithms were tested for the small network. The results indicated that GA and 

ES with no overloading and two variations of ADP and their modifications found signal timings 

that resulted in similar network performances. From these four cases, the average delay was 

between 215 to 226 seconds per vehicle. The ADP Modification 3 resulted in the lowest average 

delay and ADP with eligibility traces resulted in the highest. System throughput was also similar 

and ranged from 2095 vehicle (ES with 20% overloading) to 2320 vehicles (ADP with no 

eligibility traces). When the network was overloaded by 10% or 20%, average delay per vehicles 

significantly increased while system throughput was still at the same level or slightly lower.  

In comparison, the signal timings for the small network found by  GA and ES were similar and 

resulted in cycle lengths that fluctuated between 78 and 98 seconds (with identical averages of 

85 seconds). However,  the ADP method (with and without eligibility traces), found cycle 

lengths of 85 to 107 seconds when left turns phases were displayed, and cycle lengths of 50 to 

63 seconds when left turn phases did not exist.   

For the modified Springfield network, when the volumes at the entry links were 750 vehicles 

per hour per lane GA and ADP found average delays of 70.3 sec and 75.8 sec, respectively, and 

were shorter that average delay of 78.7 s for ES and 85.6 s for the modified ADP. Network 

throughputs for GA (4987 vehicles), ES (5005 vehicles), and ADP (4981 vehicles) were similar 

and slightly higher than that for modified ADP (4746 vehicles). Higher throughput and lower 

delay for GA and ES was expected since they were optimizing the offsets in addition to signal 

timing parameters, and as a result several intersections end up having signal coordination. ADP 

on the other hand was responding to the current network condition assuming the intersections 

were not interconnected. The signal coordination resulted in less number of stops in the 

network and increased average speed. Thus, average number of stops for GA (2.0 stops) and ES 

(2.4 stops) were fewer than that for ADP (3.0) and its modification (3.3). In addition, GA (14.0 

mph), ES (12.9 mph), and ADP (13.1 mph) resulted in a higher average speed in the network 

than modified ADP (12.1 mph). 

When the entry volumes were set to 1000 in the modified Springfield network, GA and ES could 

coordinate some of the signals of the network. As a result, average delay inside the network for 
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GA (144 s) and ES (137 s) was shorter than that for ADP (159 s) and modified ADP (171 s). 

However, GA and ES metered vehicles at the entry links more than ADP and its modification 

and did not let too many vehicles enter the network. This resulted in a larger total average 

delay (inside and outside) of the network for GA (227 s) and ES (222 s) compared to ADP (187 s) 

and modified ADP (203 s). Since GA and ES let fewer number of vehicles enter the network, the 

throughput for ADP (4718 vehicles) was more than that for GA (4302 vehicles) and ES (4388 

vehicles). On the other hand, since the links and intersections inside the network were not as 

congested, the average number of stops was lower for GA (4.2 stops) and ES (4.1 stops) 

compared to ADP (5.1 stops) and modified ADP (5.1 stops).  Similarly, and average speed was 

higher for GA (8.2 mph) and ES (8.6 mph) than ADP (7.5 mph) and modified ADP (7.0 mph) 

modified ADP.  

Queue management is more important than delay minimization in oversaturated network. For 

queue management purposes, we simultaneously considered the efficiency of green utilization 

and queue occupancy in assessing the effectiveness of the signal timing optimization methods 

used in this study. The queue management analysis showed that to get the best network 

performance in the oversaturated condition, the green utilization efficiency for protected 

movements (through or left-turns) should be close to saturation headway. 

In addition, it was found that letting too many vehicles enter into an oversaturated network is 

not be the best strategy for all traffic conditions. Vehicles could enter the network up to a 

certain traffic demand, but beyond this point the network will not be able to process them and 

blockage or gridlocks may happen. This may in turn result in a decrease in the number of trips, 

and an increase in average travel delay both inside the network and at the borders. Whenever 

traffic demand is beyond this optimal level, the traffic demand should be metered to prevent a 

network overload and decrease in the network throughput.  

Recommendations 

Future work to improve the methods described in the report, particularly for real-world 

applications, is needed. Several topics can be further studied for advancing the state-of-the-
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practice in traffic signal control, including: 1) reduction in the required running time for GA and 

ES, 2) improvements in the algorithm for ADP regarding the state representation and the 

learning functions, 3) the long term performance of the algorithms, and 4) extended capabilities 

such as communication between intersection and augmented set of constraints to account for 

known issues in real-world scenarios.            

            

 

  



NEXTRANS Project No 019PY01Technical Summary - Page 5 

 

Contacts 

For more information: 

Professor Rahim F. Benekohal 

University of Illinois at Urbana Champaign 

205 N Mathews Ave 

Urbana, IL, 61801 

Phone number: 217-244-6288 

Fax number: 217-333-1924 

Email Address: rbenekoh@illinois.edu 

 

NEXTRANS Center 

Purdue University - Discovery Park 

2700 Kent B-100 

West Lafayette, IN 47906 

 

nextrans@purdue.edu 

(765) 496-9729 

(765) 807-3123 Fax 

 

www.purdue.edu/dp/nextrans 

 



vi 

 

 

 

NEXTRANS Project No. 047IY02  

Traffic Signal Coordination and Queue Management in 

Oversaturated Intersection 

By 

Ali Hajbabaie  

PhD Candidate 

University of Illinois at Urbana Champaign 

ahajbab2@illinois.edu 

 

And 

 

Juan C. Medina 

PhD Candidate 

University of Illinois at Urbana Champaign 

jcmedina@Illinois.edu 

 

And 

 

Rahim F. Benekohal (PI) 

Professor 

University of Illinois at Urbana Champaign 

rbenekoh@illinois.edu 

 

Report Submission Date: March 18, 2011 



vii 

 

Contents 

CHAPTER 1. INTRODUCTION ............................................................................................. 1 

CHAPTER 2. BACKGROUND ............................................................................................... 3 

CHAPTER 3. METHODOLOGY............................................................................................. 9 

3.1 Genetic Algorithms (GA) ............................................................................................... 9 

3.1.1 Selection ....................................................................................................................... 10 

3.1.2 Crossover ...................................................................................................................... 11 

3.1.3 Mutation ........................................................................................................................ 11 

3.2 Evolution Strategy (ES) ................................................................................................ 11 

3.2.1 Recombination .............................................................................................................. 13 

3.2.2 Mutation ........................................................................................................................ 13 

3.2.3 Selection ....................................................................................................................... 14 

3.3 Approximate Dynamic Programming (ADP) ............................................................... 14 

3.3.1 ADP “post-decision” state variable .............................................................................. 16 

3.3.2 State representation ....................................................................................................... 18 

3.3.3 Cost function ................................................................................................................. 19 

3.3.4 Eligibility traces – Making the most of every state change .......................................... 20 

3.4 Implementation  ............................................................................................................ 21 

3.4.1 Genetic Algorithms ....................................................................................................... 21 

3.4.2 Evolution Strategies ...................................................................................................... 24 

3.4.3 Approximate Dynamic Programming ........................................................................... 25 



viii 

 

3.4.4 Calibration of VISSIM to CORSIM ............................................................................. 26 

CHAPTER 4. CASE STUDY ................................................................................................. 28 

CHAPTER 5. SIGNAL TIMING METHODOLOGIES USED ............................................. 33 

5.1 Case 1 - Network of 9 intersections in oversaturated conditions ................................. 33 

5.1.1 Genetic algorithms (GA) .............................................................................................. 33 

5.1.2 Evolution Strategies (ES) ............................................................................................. 35 

5.1.3 Approximate Dynamic Programming (ADP) ............................................................... 37 

5.1.4 Modified ADP – Approximating ADP signal timings to fixed cycles and splits ......... 40 

5.2 Case 2 - Modified Springfield network in close-to-saturation conditions .................... 43 

5.2.1 Genetic algorithms (GA) .............................................................................................. 43 

5.2.2 Evolution strategies (ES) .............................................................................................. 45 

5.2.3 Approximate dynamic programming (ADP) ................................................................ 47 

5.2.4 Modified ADP – Approximating ADP signal timings to fixed cycles and splits ......... 49 

5.3 Case 3 - Modified Springfield network in oversaturated conditions ............................ 49 

5.3.1 Genetic algorithms (GA) .............................................................................................. 49 

5.3.2 Evolution strategies (ES) .............................................................................................. 51 

5.3.3 Approximate dynamic programming (ADP) ................................................................ 53 

5.3.4 Modified ADP – Approximating ADP signal timings to fixed cycles and splits ......... 55 

CHAPTER 6. PERFORMANCE OF THE DIFFERENT STRATEGIES .............................. 56 

6.1 Case 1 - Network of 9 intersections in oversaturated conditions ................................. 56 

6.1.1 Average delay and network saturation ......................................................................... 56 

6.1.2 Network throughput ...................................................................................................... 58 

6.1.3 Average speeds ............................................................................................................. 59 



ix 

 

6.1.4 Average number of stops and stopped delay ................................................................ 60 

6.1.5 Efficient use of green .................................................................................................... 62 

6.1.6 Queue overflows ........................................................................................................... 64 

6.1.7 Extreme delay values .................................................................................................... 65 

6.2 Case 2 - Modified Springfield network in close-to-saturation conditions .................... 67 

6.3 Case 3 - Modified Springfield network in oversaturated conditions ............................ 72 

6.4 Computational effort ..................................................................................................... 79 

6.5 Knowledge requirements .............................................................................................. 80 

6.6 Potential for field implementation ................................................................................ 81 

CHAPTER 7. QUEUE MANAGEMENT ANALYSIS ......................................................... 82 

7.1 Case 1 - Network of 9 intersections in oversaturated conditions ................................. 83 

7.2 Case 2 - Modified Springfield network in close-to-saturation conditions .................... 86 

7.3 Case 3 - Modified Springfield network in oversaturated conditions ............................ 88 

CHAPTER 8. CONCLUSIONS .............................................................................................. 92 

Reference ................................................................................................................................. 95 



1 

 

 

CHAPTER 1.  INTRODUCTION 

Transportation demand has continued to increase over the past years. Traffic 

congestion in major US metropolitan areas costs $87 billion dollars annually (Schrank & 

Lomax, 2009). This cost plus other negative effects of traffic congestion, calls for practical 

methods to  better manage transportation networks. An effective method to reduce 

congestion is transportation supply management, which can be implemented in the form of 

optimal or near-optimal signal timing parameters in a network (i.e. cycle length, phase plane, 

green splits, and offsets). 

It is well known that solving the problem of finding optimal signal timings for a 

network, particularly in oversaturated conditions, is very challenging. This is the case 

because the signal timing at one intersection influences the state of other intersections, and 

also because no closed-form expressions are available for network delay and throughput 

based on signal timing parameters.  

Consider for example a network of 20 intersections with protected left turn phases, 

two-way streets, fixed signal timing (i.e. cycle length, green splits, and offsets do not change 

in the study period), and a study period of 15 minutes. This simple case will result in a 

decision space as large as 1.86×10153, when combining all possible signal timings. More 

specifically, at each intersection with a four-phase signal plan, there are 8 different values for 

left turns for each direction (assuming a minimum of 7 seconds and a maximum of 15 

seconds), 60 different values for through movement at each direction (assuming a minimum 

of 20 seconds and a maximum of 80 seconds), and 200 different values for offsets (assuming 
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a minimum of 0 seconds and maximum of 200 seconds). The combination of these solutions 

yields (8×60×8×60×200)20, or 1.86×10153. 

Therefore, traditional optimization methods either do not find the optimal solution 

(since the objective function does not have a closed-form formulation), or they need an 

extraordinary amount of time to find an optimal solution.  

On the other hand, meta-heuristic approaches such as Genetic Algorithms (GA), and 

Evolution Strategies (ES), and intelligent learning approaches such as Approximate Dynamic 

Programming (ADP) could be coupled with a microscopic traffic simulation tool to 

effectively determine optimal or near-optimal signal timing parameters in a transportation 

network.  

Thus, in this study, these approaches (GA, ES, and ADP) are used to solve the 

abovementioned problem; they are individually described, analyzed, and also compared to 

each other.  

This report is divided into 7 chapters. Chapter 2 contains a critical review of relevant 

literature. In Chapter 3 the methodology of the study is presented. Chapter 4 describes the 

case study networks used in this study. Chapter 5 explains signal timing parameters found by 

each search technique. In Chapter 6 the effects of different strategies on the network 

performance are described and Chapter 6 presents the concluding remarks and future work.  
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CHAPTER 2.  BACKGROUND 

Traffic signal timing, when done properly, improves intersection traffic operation and 

safety. The majority of traffic signal optimization methods use the concept of delay 

minimization either alone or in combination with other factors. Delay minimization works 

well in undersaturated conditions where queue spillbacks do not block the adjacent lanes or 

nearby intersections. A few popular software programs (Synchro, PASSER, TRANSYT7F, 

MAXBAND, etc) provide signal coordination plans using the delay minimization concept. 

The demand-responsive signal coordination methods such as Split, Cycle, Offset, 

Optimization Technique (SCOOT) and Sydney Coordinated Adaptive Traffic System 

(SCATS) are also based on delay minimization concept. Furthermore, the adaptive methods 

such as Optimization Policy for Adaptive Control (OPAC) and Real-time Hierarchical 

Optimized Distributed Effective System (RHODES) are also based on delay minimization. 

All these techniques work in undersaturated conditions where demand is less than the 

capacity and usually the queue dissipates before the green signal ends.    

However, in oversaturated conditions, the queues would not completely dissipate 

after the green signal. In this case if they are not managed properly, they may grow and 

eventually block an upstream signal, resulting in a gridlock. To prevent this, queues in an 

oversaturated network should be carefully monitored, and the optimization technique should 

take queues into account either in the objective function, or in the constraints.  

In the rest of this section the previous studies on signal timing optimization in 

oversaturated condition will be reviewed.  
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Early studies on signal control in oversaturated conditions were done by Gazis 

(1964), and Gazis and Potts (1965). Gazis proposed a method to control two closely-located 

oversaturated intersections and minimized delay (Gazis D. C., 1964) (Gazis & Potts, 1965).  

Michalopoulos and Stephanopoulos (1977) used control theory to propose a strategy 

to minimize delay on a single, and on two oversaturated intersections with one-way streets. 

Their study considered queue constraints, travel time between the two intersections, and 

turning movements. (Michalopoulos & Stephanopoulos, 1977).  

Lo and chow (2004) applied their Dynamic Intersection Signal Control Optimization 

(DISCO) method to a one-way arterial. DISCO uses the cell transmission model proposed by 

Daganzo (1992) and simple genetic algorithms to find near-optimal signal timing. They 

found that the most flexible strategy plan, variable-green-no-cycle, did not necessarily result 

in the best answer under the limitations of solution heuristics, especially when no good initial 

solutions were provided. However, with good initial signal timing, this plan outperformed 

other plans. (Lo & Chow, 2004) (Daganzo, 1992). 

Yuan et al. (2006) determined optimal signal timing in a network of three 

intersections for an oversaturation period of ten minutes. They used cell transmission model, 

and Genetic Algorithms (GA) to find the optimal signal timing. Their algorithm used a fixed-

cycle strategy and determined signal timing parameters. They found that the best signal 

timing with fixed-cycle strategy has a cycle length that is less than the maximum cycle 

length. This findings contrasted with other previous studies (Yuan, Yang, & Shen, 2006).  

Abu-lebdeh and Benekohal (1999) developed a dynamic traffic signal control 

procedure for oversaturated arterials. Their method produced real-time signal timings that 

dynamically managed queue formation and dissipation. For a one-way arterial, their method 

provided dynamic time-dependent traffic control. Offsets and green times were dynamically 

changed as a function of demand and queue lengths. They found similar results for a two-

way arterial however, as expected, for the secondary direction their algorithm could not 

provide all the capabilities associated with the primary direction (Abu-Lebdeh & Benekohal, 

1997) (Abu-Lebdeh & Benekohal, 2000).  
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Park et al. (2000) used genetic algorithms to optimize signal timing of oversaturated 

intersections and tested their method on an arterial of four intersections. They used three 

objective functions that were: delay minimization, modified delay minimization with penalty 

function, and throughput maximization. They found that the GA-based algorithm with delay 

minimization produced a superior signal timing compared to other GA strategies and 

TRANSYT-7F (Park, Messer, & Urbanik II, 2000).  

Lieberman et al. (2010) proposed a signal control optimization policy that was 

designed only for oversaturated condition. Their method maximized throughput while 

managing queues in the system. They tested their model on a one-way oversaturated arterial 

of two intersections and stated that their model provided an overall higher utilization of 

intersection capacity, consistently better service for cross streets and 22% lower delay per 

vehicle compared to TRANSYT-7F (Lieberman, Chang, Bertoli, & Wuping, 2010). 

Zhang et al. (2010) proposed and offline method to determine signal timing for a pre-

timed two-way arterial of five oversaturated intersections. Their method determined fixed 

signal timing for their study period. They used cell transmission models and GA and 

determined cycle length, green splits, phase sequence, and offsets to minimize the expected 

delay incurred by “high-consequence” demand scenarios. They found their method working 

better against high-consequence demand scenarios without losing optimality in the average 

sense (Zhang, Yin, & Lou, 2010).  

Li and Chang (2010) proposed a model for signal optimization in an arterial with 

enhanced cell transmission formulation that worked in both undersaturated and oversaturated 

condition. They introduced a new diverging cell for formulating interactions of queue 

spillback between through traffic and left turn. They stated that their model yielded effective 

signal plans for undersaturated and oversaturated intersections (Li & Chang, 2010) .  

Xin et al. (2010) developed a new adaptive signal control decision support system. 

Their system could operate in two modes one with operator in the loop and one without the 

operator or autonomous. Based on simulation results they found that their method decreased 

the travel time by 8%. Based on the preliminary results, queue distribution was more 

balanced when their model was used (Xin, Chang, Bertoli, & Talas, 2010).  
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Longley (1968) proposed a method that was only applicable to oversaturated and 

saturated conditions. His method managed the queues so that a minimum number of 

secondary intersections were blocked. His algorithm worked by changing the green split 

between a maximum and a minimum so that the queue unbalanced was reduced to zero. 

Simulation studies found Longley’s algorithm effective in saturated or oversaturated 

condition however, if any of the intersections became undersaturated, the algorithm would 

not be applicable anymore (Longley, 1968).  

Singh and Tamura (1974) used optimal control theory to control traffic in 

oversaturated condition. Their method did not take the interference of downstream queues 

with upstream discharge into account. They assumed that the offsets were known. This 

assumption could be a limitation of their study since in oversaturated condition when queues 

were formed the interference with the upstream signal was not avoidable (Singh & Tamura, 

1974).  

D’ans and Gazis (1976) extended the work of Gazis (1964) for any number of signals 

and not only for one cycle. They used fixed time signals and minimized the lost time by 

vehicles in queues over the entire study period. They found that solving oversaturation 

problems required optimum allocation of routes to drivers, and optimum signal switching at 

each intersection, simultaneously (D'Ans & Gazis, 1976). 

Girianna and Benekohal (2002) proposed dynamic signal coordination models for 

oversaturated transportation networks. They formulated the model as a dynamic optimization 

problem with the objective of maximizing the total number of vehicles released by the 

network and penalizing it by queue accumulation along the arterials and used genetic 

algorithms to find the near optimal signal timing. They found that their model successfully 

managed queues along the coordinated arterials and also created opportunity for traffic 

progression in specified directions (Girianna & Benekohal, 2002).  

Chang and Sun (2003) proposed their method to dynamically control an oversaturated 

traffic signal network by using a bang-bang like model for oversaturated intersections, and 

TRANSYT-7F for undersaturated intersections. They tested their model in a network of 12 

oversaturated intersections that were surrounded by 13 undersaturated intersections and they 
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allowed turning movements and compared it to TRANSYT-7F. They found that their method 

provided better results than TRANSYT-7F (Chang & Sun, 2004). 

Sun and Benekohal (2006) developed a bi-level programming formulation and a 

heuristic solution for traffic control in an oversaturated network with dynamic demand and 

stochastic route choice. They used genetic algorithms and a cell transmission based 

incremental logit assignment to solve the problem and tested their method on two 

transportation networks. Using dynamic signal timing, reduced the average link travel time 

by 5-8% and up to 14% compared to a static signal timing (Sun, Benekohal, & Waller, 2006).  

Putha et al. (2010) used ant colony optimization to solve signal coordination problem 

for an oversaturated network. Their formulation and case study network was very similar to 

Girianna and Benekohal’s (2002) formulations and case study. They compared the 

performance of these two methods by comparing the average value of fitness function over 

30 runs. They found that for most of the cases ant colony provided higher fitness compared 

to simple genetic algorithm except for the case with 400 population size/ants and 50 

generations/trials (Putha, Quadrifoglio, & Zechman, 2010).  

Regarding the use of dynamic programming (DP), only a few attempts at solving the 

problem of optimal signal timings in a traffic network are found in the literature. This is not 

surprising because even though DP is a tool to solve complex problems by breaking them 

down into simpler ones, it suffers from what is known as the curses of dimensionality. This is 

the result of generating a sequence of optimal decisions by moving backward in time to find 

exact global solutions. However, solving Belman’s optimality equation in a recursive way 

can be computationally intractable, since it required the computation of nested loops over the 

whole state space, the action space, and the expectation of a random variable. In addition, DP 

requires knowing the precise transition function and the dynamics of the system over time, 

which can also be a major restriction for some applications.  

Thus, with these considerations, finding limited literature for medium or large-sized 

problems exclusively using DP is not surprising. The work of Robertson and Bretherton 

(1974) and Gartner (1983) is cited as an example, where they found a 56% decrease in delays 

using DP compared to the best fixed-time plans.  
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On the other hand, Approximate Dynamic Programming (ADP) has increased 

potential for large-scale problems. ADP uses an approximate value function that is updated 

as the system moves forward in time, giving the advantage of an algorithm that increasingly 

improves an estimate of the value of a state. ADP can also effectively deal with stochastic 

conditions by using post-decision variables, as it will be explained in more detail in the 

subsequent sections.  

Despite the fact that ADP has been used extensively as an optimization technique for 

a variety of fields, the literature shows only a few studies in signal timing optimization using 

this approach. Nonetheless, the wide application of ADP in other areas has shown that it can 

be a practical tool for real-world optimization problems, such as signal control in urban 

traffic networks.  

A recent study on traffic control in a single intersection by Cai et al. (2009) used ADP 

with two different learning techniques: temporal-difference reinforcement learning, and 

perturbation learning. They reduced the delay from 13.95 vehicle-second per second 

(obtained with TRANSYT) to 8.64 vehicle-second per second. Also, a study by Teodorvic 

(2006) combined dynamic programming with neural networks for a real-time traffic adaptive 

signal control, claiming that the outcome of their algorithm was nearly equal to the best 

solution. 
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CHAPTER 3.  METHODOLOGY 

In this section, the principles used by Genetic Algorithms (GA), Evolution Strategies 

(ES), and Approximate Dynamic Programming (ADP) are described, as well as the details on 

how they are implemented to find optimal signal timing parameters in a traffic network.  

 

3.1 Genetic Algorithms (GA)  

GAs are search techniques to find exact or approximate solutions to an optimization 

or a search problem. GAs are global search meta-heuristics that are less likely to be trapped 

in a local optimum. GAs are a specific class of evolutionary algorithms and use techniques 

inspired by evolutionary biology such as inheritance, selection, crossover, and mutation.   

GAs are implemented in a computer simulation environment where a population of 

candidate solutions are created and evolved towards better solutions over different 

generations. Unlike other well-known optimization techniques that start the search with one 

feasible solution, GAs start the search with several points in the feasible area. The initial 

population can be created randomly or by using some heuristics. Each population member is 

called an individual, or a chromosome, and has a fitness value that represents the value of the 

objective function for that individual. For example, if the objective function is to maximize 

���� = ��, the fitness of the individual  � = 3 will be 3� = 9. Based on the fitness values, 

GAs stochastically select some individuals from the population, in such a way that higher 

fitness results in higher probability of being selected. The selected individuals form a mating 

pool where they are crossed over and mutated, and then they form some new individuals for 

the population in the next generation. GAs continue to select new individuals as parents until 
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enough individuals for the next generation are created. As soon as a new individual is created 

the fitness value of that individual is evaluated. The whole process of selection, crossover, 

and mutation is continued until the termination criteria are met. Usually a maximum number 

of generations, or a threshold for the relative difference between the maximum fitness value 

and average fitness value of a population are chosen as the termination criterion.  

Simple GA uses binary coding to represent decision variables. This means that a 

decision variable in the form of �	 = ��
, ��, ��, … , ���
, ��� is represented as the following 

chromosome: 

 

0 1   . . . 1 1 1    . . .  0 . .    . . .  .     .   .   .   .   .  . . .    . . .  . . .    . . .  . 

�
 �� ��     .   .   .   .   .  . ���
 �� 

Figure 3.1. Binary representation of decision variables in GAs. 

 

Simple GA has three operators: Selection, Crossover, and Mutation.  In simple GA 

the initial population is created randomly or by using some heuristics. Then selection 

operator chooses two parents. These parents are crossed over, leading to two new individuals, 

which are mutated to form two individuals for the next generation. The three operators of 

simple GA are explained next: 

3.1.1 Selection 

Selection is one of the simple GA (and other variations of GAs) operators that leads 

the search to more desired parts of the feasible area. It simply selects the individuals with 

higher values; however, the process of selection is stochastic rather than deterministic. This 

process is not purely random but, is biased towards selection of  individuals with higher 

fitness values. There are three main variations of selection: 
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3.1.1.1 Proportionate Selection 

3.1.1.2 Truncation Selection 

3.1.1.3 Tournament Selection 

In this study a tournament selection with replacement with a pressure of 6.7% is used. 

3.1.2 Crossover 

Crossover (also called recombination) is one of GA’s operators that results in 

reproducing new generation. In GAs, crossing over two parents leads to two new individuals 

that could potentially be fitter than their parents. To generate two new individuals by 

crossover, two parents are randomly selected from the mating pool and then crossed over. 

Several variations of cross over exist four of which are listed bellow: 

3.1.2.1 Single-Point Crossover 

3.1.2.2 Two-Point Crossover 

3.1.2.3 Multi-Point Crossover 

3.1.2.4 Uniform Crossover 

In this study we have used a uniform cross over that selects each chromosome of the 

offspring probabilistically from one of the parents.  

3.1.3 Mutation 

Mutation is used in GAs to introduce more diversity to the search. In addition, if the 

parents are similar, crossing them over does not produce a new individual. In this case 

mutation is needed to generate a new offspring. In bitwise mutation, each bit of the 

chromosome is flipped according to the probability of the mutation. This means that, each bit 

of a chromosome is flipped with probability of �� that is probability of mutation. Different 

methods of mutation exist. But in this research the regular mutation is used.  

 

3.2 Evolution Strategy (ES) 

ES, genetic algorithms, and evolutionary programming are the main three paradigms 

of Evolutionary Computation.  In general, these three methods are based on iterative birth 
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and death, variation, and selection. The first ES had only two rules: 1) slightly change all 

variables at a time at random, 2) if this set of variables leads to better results keep them 

otherwise, keep the original ones. As it is apparent from the rules, this ES worked with only 

two individuals per iteration: one old individual or parent, and one new individual or 

offspring. This ES was later called 1+1-ES meaning that out of a single parent, one offspring 

is generated and among these two individuals, the best one is chosen. The 1+1-ES with 

binomially distributed mutations on a two dimensional parabolic ridge was studied by 

Schwefel (Schwefel, 1965). The study showed that 1+1-ES could get stuck in a local 

optimum. In this case, larger mutations were needed to escape from this local optimum. To 

solve this problem, instead of using discrete variables, using continuous variable with 

Gaussian distributions was suggested. Rechenberg presented approximate analyses of the 

1+1-ES with Gaussian mutation on two different functions (hyper sphere, and rectangular 

corridor models). He found that the convergence was inversely proportional to the number of 

variables; linear convergence might be obtained if the mutation step size was set to the 

proper order of magnitude; and the optimal mutation strength was in the order of one fifth for 

both models. In addition, instead of using a single parent, he used µ, crossed them over, and 

generated one offspring. He concluded that this method could speed up the evolution if the 

speed was measured per generation; and the population might learn by itself how to adjust 

the mutation step size. This method of ES was called µ+1-ES since among µ+1 individuals 

the best µ individuals were selected or in other words, the worst individual is extinct. Later, 

µ+1-ES was expanded to µ+λ-ES. In this method instead of creating a single offspring out of 

the µ parents, λ descendants are created. Then among these µ+λ individuals the µ fittest 

individuals are chosen to form the next population. Another variation of ES with µ>1 parents 

and λ>1 descendants exists. In this method, after creating the new λ descendants, all parents 

are discarded. Out of the λ descendants, the fittest µ are chosen to form the next population. 

Thus, λ has to be strictly larger than λ. This method is called µ,λ-ES. In general, µ+λ-ES and 

µ,λ-ES generate better results than 1+1-ES and µ+1-ES do. Although intuitively it is 

believed that µ+λ-ES generates better results that µ,λ-ES does, for small µ and λ-to-µ ratio, 

µ,λ-ES generates better results. When µ and λ-to-µ ratio increase, both algorithms perform 

similarly.  
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All variations of ES with µ>1 parents and λ>1 descendants have three different 

operators that are recombination, mutation, and selection. ES could be self adaptive. This 

means that as the populations evolve, the strategy parameters evolve as well. This is done by 

coupling of endogenous strategy parameters with the objective parameters. In other words, 

the decision vector contains object parameters as well as endogenous strategy parameters. 

This is shown in the equation below. 

������	 = ��
�, ���, … , ���, �
�, ���, … , ���� 

Where : yij: the ith component of decision variable j, and  

 Sij: the ith component of endogenous strategy parameter j.  

ES operators are briefly explained below: 

3.2.1 Recombination 

In recombination, � ≥ 1 individuals among parents are selected and then recombined. 

When � = 1, the new offspring is simply equal to its parent meaning that no recombination 

is done. There are two main methods of recombination: discrete, and intermediate. In this 

study both methods have been used.  

3.2.2 Mutation 

Mutation is the main source of genetic variation in ES. The design of mutation 

operator is problem dependent. It is suggested that each mutation operator has to have 

reachability, unbiasedness, and scalability (Beyer, 2001).  

Reachability means that from each parental state, any other state should be reachable 

in a finite number of mutations. Mutation operator should be completely unbiased toward 

individuals with higher fitness values. Instead, selection operator is biased towards fitter 

individuals. Scalability means that mutation step size should be tunable in order to adapt to 

the properties of the fitness landscape.  

In general, the new individual, ��, is generated by mutating the recombinant, �, as 

shown below: 

�� = � + � 
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To determine z, three different equations may be used: 

� = � × � 
�0,1�, … ,  ��0,1� � 

This method of mutation is called single component mutation that results in 

concentric spheres around the parental state y. This operator is easy to use since it has only 

one endogenous strategy parameter however, in some situations it is beneficial to have a 

vector of endogenous strategy parameters. For those cases, z is determined using the equation 

below: 

� = ��
 ×  
�0,1�, … , �� ×  ��0,1� � 

This equation results in ellipsoidal surfaces around the parental state y. 

In the most general case, when the ellipsoid needs to be arbitrary rotated in the search 

space, the following should be used to determine z.  

� = #��
 ×  
�0,1�, … , �� ×  ��0,1� �′ 

Where M is an orthogonal rotation matrix. This matrix introduces correlations 

between the components of z.  

3.2.3 Selection 

The selection operator ��;& takes the �'( best individuals out of a population of size 

q. There are two variations of selection based on using “plus” or “comma” strategies. In case 

of using “plus” strategy, after generating λ descendants out of µ parents, the best µ are 

selected among µ+λ individuals. In case of “comma” strategy, after generating the λ 

descendants, the best µ are selected among the λ descendants.  

 

3.3 Approximate Dynamic Programming (ADP) 

ADP was also selected as a method to solve the problem of finding the optimal signal 

timings in an urban traffic networks with oversaturated conditions over a fixed time period. 

The ADP algorithm moves forward in time to improve the value of being in each state, which 

then are used as a decision-making tool. This idea contrasts with that from exact dynamic 

programming, where the precise value of a state is computed by starting from the last time 
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period and sequentially backing up in time, building the optimum set of actions toward the 

starting point. Similar to the standard dynamic programming, the objective of the problem 

with ADP should be finding (for the whole study period) the argmax of the right hand side of 

the optimality equation below: 

 

 

Where Vt is the value of state St at time t, Ct is a cost function, xt is the action at time 

t, SM is the transition function that finds St+1, γ is a discount factor, and E is the expectation.  

For our specific traffic control problem, the cost function could be defined based on 

one or multiple measures of performance. For example, the cost could reflect the delay 

experienced by motorists at the intersection, the number of vehicles waiting for red, or 

ultimately any combination of traffic-related factors able to provide a useful measure of the 

goodness of a state.  

ADP uses an approximate value function )( tt SV
 
that is constantly being updated. 

This makes the algorithm extremely useful as the estimates are available at any point in time 

(thus, suitable for real-time control), and allows the use of bootstrapping for closing the gap 

between approximate estimates and the true value of a state.  

Since the optimization expression does not require a model of the dynamics of the 

system over time, the system moves step by step following a transition function that can be 

provided by a simulation environment (or incoming real-world data). This transition can be 

in general expressed by the expression below:  

 

 

From above, the state changes from St to St+1 in a transition that starts at time t and 

ends at t+1, and Wt+1 represents the exogenous (or random) information that influences the 

transition from state St to St+1, after executing action xt.  
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This particular element of the system clearly makes the transition function stochastic 

and captures the variation from one simulation run to the other. Therefore, the states should 

be visited multiple times not only to improve the estimate of the state value (Vt(St)), but also 

to explore the multiple possible transitioning states St+1 upon visiting state St.  

 

3.3.1 ADP “post-decision” state variable 

As it is widely known in the literature, there are a series of variants to the basic ADP 

algorithm. For our specific problem, it was decided to adopt an ADP algorithm the uses the 

“post-decision” state variable, more precisely the formulation described by Powell (2007). 

This algorithm provides a series of computational advantages over more traditional ADP 

algorithms, as it is explained below.  

The “post-decision” state variable uses the concept of the state of the system 

immediately after an action is taken. This can be described, in general, with the expression 

that represents the transition function of our problem: 

  

 

Note that this transition can also be expressed as a sequence of two steps:  

The state of the system as soon as the action is taken, but no exogenous information 

from time t to t+1 has been received (in other words, vehicles have not reacted to the signal): 

 

The end of the transition, before the next action is decided, and after the exogenous 

information was received (this is, after the vehicles have reacted to the signal): 

 

In a similar way, we can describe the value of a state right after a decision is made, 

and also after receiving the exogenous information: 

The action has been decided and executed, at time t-1, the exogenous information (wt) 

is received and the future state St (the state at time t) becomes known: 

),,( 11 ++ = ttt
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A decision is made at time t regarding the best action xt, considering the cost Ct and 

the expected future state Vt
x
(St

x
): 

 

 

The action xt is decided and executed, at time t, the exogenous information (wt+1) is 

received, and the expected future state (St+1)  is estimated: 

 

 

Note that the standard optimality equation is obtained by combining the last two 

equations. However, if the first two equations are combined instead, a new expression using 

the “post-decision” state variable is obtained as follows:  

 

 

This expression is very different from the traditional optimality equation mainly 

because the expectation is outside of the optimization problem. This provides an important 

computational advantage and allows the algorithm to provide approximated solutions as the 

number of iterations increases. It also allows for the use of a forward algorithm so that it is 

no longer needed to loop through all possible states. However, it is required to approximate 

the expectation of the value function.  

Thus, as long as the states are visited with some frequency, it is possible to have 

“good enough” estimates for adequate decision making support.  

The value function, using the post-decision variable, can be updated using a similar 

equation as the one used in the traditional update rule for temporal difference learning, as 

follows: 
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Where 
)S(V n

1t

n

1t −− is the approximated value of the state 
n

1tS −  at iteration n, and α is 

the step size or learning rate. The step size determines the weighted value of the current 

direction pointed out by 
n

tv̂
 in relation to the approximation of the state value at the current 

iteration.  

For convergence to be achieved, the learning rate should decrease over time. These 

rules require: 1) the step sizes to be non-negative, 2) that the infinite sum of step sizes must 

be infinite, and 3) that the sum of the square of the step sizes must be finite. These are typical 

rules for convergence of stochastic gradient algorithms.  

It is noted that since it is necessary to have a value of 
)( n

t

n

t SV
for each state

n

tS
, the 

problems do not reduce their dimensionality when using ADP, but rather reduce the number 

of computations needed to find an approximate solution.    

 

3.3.2 State representation 

There are several ways to represent the state of traffic at a signalized intersection. 

They vary from the number of vehicles in each approach, to the number of vehicles in queue, 

to the current delay experienced by those drivers. Each of them may have advantages over 

the others, and it is not easy to clearly identify the most appropriate for all types of 

evaluations.  

However, from past studies, a very common practice is to use the number of vehicles 

in queue. This was the approach ultimately adopted for this study, thus the state was defined 

as a multidimensional space with four components (one for each of four queues waiting for 

the green light): 1) east-west through movement, 2) north-south through movement, 3) east-

west left-turn movement, and 4) north-south left-turn movement. 

In addition, the state representation included an extra component that described the 

current state of the signal (indicating the phase that was currently receiving the green 

indication). This component was important in order to distinguish the pre-decision state 

variable from the post-decision state variable, as the state will change as soon as the signal 
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changes (even if drivers have not reacted to it). At times when the signal was transitioning 

from one phase to the next, either displaying the yellow indication or in the all-red stage, the 

state would show the next phase receiving the green indication.  

Thus, in total, the state was represented by a five-dimensional space: four components 

describing the number of vehicles in queue for the four movements, and a component 

showing the current phase with the right of way.      

 

3.3.3 Cost function 

The cost function in our problem was defined, for a given intersection, as a 

combination of the number of vehicles being served by the green light (with positive sign) 

and the number of vehicles waiting to be served in the remaining approaches (with negative 

sign). This general formulation is one of many ways to manage the queues at an intersection, 

and it is based on the idea of serving the longest queues first.  

In addition, penalties were defined for situations in which the size of the queues 

reached a length close to the capacity of the links. These penalties were designed to prevent 

queue overflows and de-facto reds, both of which are critical in oversaturated conditions. A 

second set of penalties was also assigned every time the right of way was switched from one 

phase to a different one. This accounted for the lost time derived from changing phases, and 

also prevented the phases to be terminated before they reached a minimum green time that 

was operationally adequate (say, at least 6 seconds). The general form of the expression to 

estimate the cost of an action is shown below: 

 

Cost(Phase)  = Queue receiving green – Σ (Queue receiving red) + (Ι(Phase) * 

Penalty) 

 

Where I(Phase) is an indicator function that is equal to 1 if the phase is different from 

the current phase and 0 otherwise, and Penalty is calculated based on an expression of the 

following form:  

{ }Signal,Q,Q,Q,QS Left,SNLeft,WEThrough,SNThrough,WEt −−−−=
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Where βi are positive coefficients, Qi is the queue of approach i ∈ {1,2,3,4} such that 

i does not have the right of way, and ϕi is the proportion of the demand in approach i with 

respect to the total volume arriving at the intersection. Thus, the penalty for changing a phase 

decreased as the duration of the current phase increased, and it was proportional to the 

fraction of the demand waiting to be served.  

 

3.3.4 Eligibility traces – Making the most of every state change 

Eligibility traces are one of the several well known mechanisms of reinforcement 

learning. The basic idea is to accelerate learning by having deeper updates, as opposed to 

only updating the value of the state visited in the last time step. Eligibility traces can also be 

thought as a combination of concepts to bridge Monte Carlo methods (which always perform 

a full backup) and the standard temporal difference expression - TD(0) (which backs up only 

one step in time). The algorithms using eligibility traces are typically represented by the 

letter λ to indicate the extent of the backups, or TD(λ). 

The implementation of eligibility traces is relatively easy and is based on a series of 

weights that keep track of how much time ago a state was visited. They are updated every 

time the system is updated in such way that the most recent states will have greater weights, 

and will be affected in greater proportion by new states (compared to those states visited in 

older time steps). Thus, a new look-up table should be maintained in order to save the current 

weight of each state (e(s)).    

There are multiple algorithms already established (for reinforcement learning), 

including a Sarsa(λ), standard Q(λ), Watkins’ Q(λ) (1992), and Peng’s Q(λ) (1996). In this 

study, a modification of the approach used in Peng’s Q(λ) algorithm was adopted for the 

ADP. The ADP algorithm can be summarized in the steps shown in Figure 3.6. 
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Figure 3.6. Algorithm for Implementing Eligibility Traces 

  

Note that a modification in the update of the trace (e(s)) was introduced, so that states 

that were visited frequently did not have traces greater than 1, potentially distorting the 

learning process. This modification is known as eligibility trace with replacement, and 

consists in “replacing” the trace of the visited state with a value of 1 instead of the typical 

addition of 1 to its current value.   

 

3.4 Implementation 

3.4.1 Genetic Algorithms 

The signal timing optimization problem is formulated as follows: 
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Where: 

T: number of study periods, 

N: total number of intersections, 

8'+: number of phases at intersection i, at time period t, 

*+,
' : total number of vehicles processed by intersection i, at time period t, in phase ?, 

6+,
' : queue length at intersection i, at time period t, waiting to be served by phase ?, and 

4+,
' :penalty weight for queue length at intersection i, at time period t, waiting to be served by phase ?. 

We deliberately did not include more constraints that are previously established by 

Grianna and Benekohal (2005) due to the following two reasons: 

1. First we wanted to make sure that the algorithm is capable of finding the near optimal 

answers on its own without introducing those heuristics and, 

2. We wanted to make GA, ES, and ADP is comparable as possible to each other. 

In particular, the main idea was to bring the definition of these three methods closer 

to each other and explore their potential in one of their basic forms. For example, it is noted 

that the formulation for the fitness function in GA and ES used similar measures as the cost 

function in ADP, and can be briefly summarized as a value that depends on the number of 

vehicles processed, or throughput (a positive value), minus the vehicles remaining in queue 

in the approaches not receiving green (a negative value). Thus, despite the fact that measures 

of performance such as delay or speed could have been added to the formulations, a simple 

form was preferred to evaluate the potential of the three methods based on the same 

parameters. 

Three different overloading patterns were used to determine the effects of them on the 

network performance. These loading patterns are: 

1- No overloading 

2- 10% overloading 

3- 20% overloading 
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For no overloading case, 4+,
'  is assumed to be one regardless of the queue length. 

This means that the objective function is simply penalized by the queue length. For 10% 

overloading, 4+,
'  changes when the queue length in a link changes. However, it is equal to 

one until the queue fills 10% of the link. Then it is increased as the queue length is increased. 

Since the length of a left turn link is different than that of a through link, we used different 

functions for 4+,
'  for 10% overloading: 

For left lane: 4+,
' =0.013 × 6+,

' �
− 0.0514 × 6+,

' + 1.0249 

For Through: 4+,
' = 0.0032 × 6+,

' �
− 0.0222 × 6+,

' + 1.0217 

For 20% overloading the same concept was used. The penalty was constantly equal to 

1 until 20% of the link was filled by queued vehicle. Then, 4+,
'  was increased according to 

the following equations: 

For left lane: 4+,
' = 0.000323 × 6+,

' �
+ 1 

For Through: 4+,
' = 0.000033 × 6+,

' �.MN
+ 1 

A population of candidate solutions is generated to search the feasible area. This 

population may be generated randomly, or with using some heuristics. Each member of the 

population, chromosome or individual, is a set of decisions variables that forms a vector. 

This vector contains signal timing parameters for each intersection, for all defined time 

intervals. Signal timing parameters for each intersection, in each time interval are phase plan, 

green time for each phase, and offset. Assuming “n” components for this vector, it can be 

represented as follows: 
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The decision variable contains the information of all time intervals sequentially. In 

each time interval, the signal timing parameters of all intersections are present. 

The first population is randomly generated and for each individual. Then CORSIM, a 

widely used microscopic traffic simulation environment,  is called to evaluate the fitness 

value of the first population. Using selection, recombination and crossover, new individuals 

are generated. This process is continued until enough individuals for the first generation are 

created. After the new population is generated, the old one is discarded and the process is 

continued until the termination criteria are met.  

3.4.2 Evolution Strategies 

The problem formulation used in ES is identical to GA as well as the penalties used 

for queue lengths.  To solve the problem with ES, the first population is randomly generated. 

Each individual contains the signal timing parameters of all intersections in all time periods 

as well as the endogenous strategy parameters. If we assume that there are “n” decision 

variables, there will be 
O�O�
�

�
 endogenous strategy parameters since we use the most general 

mutation cases to solve the problem . The decision variable is similar to that in GA but has 

one extra component as shown below: 

Q��	 = ��
, ��, ��, … , �O�
, �O, R��	� 

Where R��	 = S�

, … , �
O, ��
, . . , ��O, … , �O�
,O, �OOT       

After generating the initial population, using recombination and mutation, λ 

descendants are generated. Then CORSIM is called to evaluate the fitness value of these 

individuals. In case of “comma” selection strategy the best µ individuals out of these λ 

parents are chosen. In cases of “plus” strategy, the best µ individuals out of the µ+λ 

individuals are chosen. This process is continued until the termination criteria are met.  
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3.4.3 Approximate Dynamic Programming 

The microscopic simulation environment provided by VISSIM was used for the 

implementation of the ADP algorithm. VISSIM provides the option of creating external 

traffic controllers through its COM interface. This feature was used to read the ADP 

algorithm, which was coded in C++ and then translated to a dynamic linked library, ready to 

be used by the simulation in running time.  

The state of the system was updated every simulation second, but the controllers 

perceived it every 2 seconds. This level of detail was able to produce green times with a 

resolution of 2 seconds. Thus, the system was able to take a decision every two seconds and 

choose between continuing the current phase and finding a more appropriate phase given the 

current volume demand, the queue, and phase duration. 

For the given network, each intersection was controlled independently by a different 

external controller (through the COM interface). Therefore, every intersection had its own 

separate set of state values and learnt the best actions independently. Note that since the 

system updates were very frequent and in order to maintain the similarity between the 

parameters between ADP and GA/ES, the exchange of information between intersections 

was not implemented. As it was defined, the system was able to react within the next 2 

seconds of any changes in the queue length. Additional efforts to provide communication 

capabilities between intersections are expected to provide improvements in performance, 

mainly for shorter links and lower volume conditions, where coordination may significantly 

reduce the number of stops and prevent cycle failures.  

An additional aspect of the ADP implementation dealt with the state space. Since 

each of the links could store a large number of vehicles, this could increase the state space to 

a number difficult to manage. As a result, the actual number of vehicles in queue was scaled 

down to be represented by a smaller range of queue levels. For the through links (2000 ft 

long each), vehicles in queue were represented by a number between 0 and 19, and for the 

left-turn links (1000 ft long each) the scale ranged from 0 to 9. The scaling down was 

performed by dividing the actual number of vehicles waiting for a given phase by a factor of 

6, reducing the resolution of the state representation. Note that two opposing queues will use 
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the same phase and thus their values will be added to determine the demand for that phase 

(e.g. eastbound through and westbound through).  

As mentioned above, the number of available phases for the controller to choose from 

was 4, including exclusive left turns and through movements. Therefore, after the queue 

adjustments (scaling down), the state space for a single intersection was in the order of 202 * 

102 * 4 = 1.6x105, allowing for the use of standard look-up tables for storing the values of 

each state (V(s)). For future studies and in cases with state spaces that demand more memory, 

it may be necessary the implementation of function approximation methods instead of look-

up tables. A typical approach for such approximations is the use of artificial neural networks. 

For the queue estimation, all links in the network were divided into segments of 120 

ft, and the vehicles in each segment were considered “queued” based on the following 

criteria: 1) the speed of the last vehicle entering the segment was below 7mph, and 2) the 

segment contained more than half of its vehicle capacity. In addition, the queue was required 

to be continuous, thus once the queue was detected in a given segment of the link, it ended at 

the first segment where the queue conditions were not met.   

The information on the status of the queue was obtained through vehicle detectors 

placed over the network and allowed the collection of data in real time through the use of the 

COM interface from VISSIM. However, it is noted that other forms of collecting real-time 

data through Application Program Interfaces (APIs) are also available, and may also allow 

the use of other measurements aside from those collected via vehicle detectors. 

The implementation of the ADP algorithm did not impose any restrictions on the 

maximum green times or the phase sequence when finding the optimal actions. The system 

was allowed to decide exclusively based on the functions and parameters described above, 

and the ADP was not directed in any way using hard-coded information specific to the tested 

traffic conditions. 

3.4.4 Calibration of VISSIM to CORSIM 

As mentioned before our GA and ES are coupled with CORSIM to find near-optimal 

signal timing parameters. However, ADP is integrated with VISSIM as this package had the 

flexibility to use external signal controllers that could modify signal timings in real time. 
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Therefore, to reduce the effects of using different simulation environments, VISSIM was 

calibrated to CORSIM by taking the following steps: 

1- The desired speeds for the two software packages were set to the same value (30 

mph) 

2- In VISSIM, two different vehicles types were created to match those that are used 

by default in CORSIM.  

3- The additive part of the desired safety distance in the car following model in 

VISSIM was changed from 2 to 3.9 to match the saturation flow rate and the 

number of vehicles processed during different green times (5, 15, 25, 35 seconds) 

in both environments. 

4- The standstill distance between the vehicles in VISSIM was changed from 6.9 to 

3.9 to match the number of vehicles that could be stored in a link of a given length 

in both environments.  

The resulting conditions allowed the use of the CORSIM solutions (for GA and ES) 

in the environment provided by VISSIM, and ultimately the comparison of these two 

methods with ADP.  
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CHAPTER 4.  CASE STUDY 

Two networks were used to evaluate the performance of the three selected methods to 

find near optimal signal timings. The first network was a small hypothetical network while 

the second was a realistic network created by making some modifications to a portion of the 

downtown network of the city of Springfield, IL.  

The small hypothetical case-study network is symmetric in volume and geometry and 

composed of nine intersections (a three by three square) that are 2000 ft apart from each 

other. All streets are assumed to have two lanes (one per direction) and there are exclusive 

left-turn pockets, 1000 ft in length, at the intersections. We assumed a short study period of 

15 minutes in which the traffic demand was fixed with the rate of 1000 vehicle per hour per 

lane at each entry point. This traffic demand was chosen to be high enough to ensure 

oversaturation in the network. This case study network is shown in Figure 4.1. 
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Figure 4.1. Symmetric case study network. 

At each intersection the following phase sequence was used for GA and ES. For GA 

and ES all four phases may used if traffic conditions demand them, otherwise 2 or 3 of the 

phases may be used. However, ADP did not follow such phase sequence and made the 

decision to have the left turn phases when the demand justified them.  
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Figure 4.2. Phase Sequence. 

In addition to the hypothetical network, a realistic network was used. The main idea 

in this case was to test the algorithms under a more diverse set of conditions, closer to real 

world operations. A portion of the downtown network in Springfield, Illinois was used for 

this purpose. The network in the case study had 20 intersections and a combination of one-

way and two-way streets with different number of lanes. It comprised the area between 5th 

and 11th street from west to east, and between Jefferson and Capitol streets from north to 

south. 

A few modifications were made to the real network in Springfield given the 

additional vehicular demand used in the test case compared to the actual demand in the field: 

1) most of the left-turn lanes in the network were shared, but this was changed by adding 

exclusive left-turn pockets, 120ft in length; and 2) in cases where there was a lane drop or a 

lane addition in one of the arterials, the model maintained the same number of lanes along 

the corridor. The test network is called modified Springfield network, and it is shown in 

Figure 4.3.  

This network did not have protected left turn phases, and as a result, we limited our 

algorithms to only two phases to control the signals (east-west bound, and north-south 

bound).   

Actual traffic volumes in this part of the network in Springfield are lower than the 

capacity of links, but the objective of the test case was to examine the network performance 

in close-to-saturated and oversaturated conditions. Thus, traffic volumes at entry points were 

increased to match the desired conditions.  

We tested two different traffic volumes in the network: 750 vehicles per hour per lane 

and 1000 vehicles per hour per lane. When traffic volume was 750, we assumed that at all 

intersections 10% of the drivers made a right turn (when possible), 10% of drivers made a 

g1 g2 g3 g4 
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left turn (when possible), and the rest went through the intersections. When the volume was 

1000 vehicle per hour per lane, we assumed that 10% of drivers turned right (when possible),   

20% of the drivers turned left (when possible) and the rest went through. It is noted that the 

turning percentages were estimated as the percentage of incoming volume from a single lane. 

In other words, the base number to estimate this percentage was the total incoming volume 

divided by the total number of incoming lanes. 
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CHAPTER 5.  SIGNAL TIMING METHODOLOGIES USED 

Three different methodologies were used to find optimal signal timings for the two 

networks: 1) Genetic Algorithms (GA), 2) Evolution Strategies (ES), and 3) Approximate 

Dynamic Programming (ADP). The first two derive from similar principles and aim at a 

directed random search of the solution space, whereas the latter aims at learning the best 

actions over time and it is more suitable for real-time decision-making. 

This section presents the signal timings obtained using each of the three 

methodologies for the following three cases:   

1) Case 1 - Network of 9 intersections in oversaturated conditions 

2) Case 2 – Modified Springfield network operating in close-to-saturation conditions 

3) Case 3 – Modified Springfield network operating in oversaturated conditions 

 

For each case 31 replications of VISSIM were made in each methodology.  The study 

period (duration) for each run is 15 minutes.   

 

5.1 Case 1 - Network of 9 intersections in oversaturated conditions    

5.1.1 Genetic algorithms (GA) 

The signal timings obtained from  GA  for three different levels of network loading 

are shown in Table 5.1. Note that GA finds signal timings for each intersection in the 

network, and these timings do not change during the study period.  
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Table 5.1. Signal Timings from GA for Case 1 

 

Although the average cycle length for the 10% and 20% overloading conditions is 

similar, a comparison of the cycle lengths for individual intersections (between 10% and 20% 

overloading) reveals that there were large variations in cycle lengths, indicating that the 

signal timing changed for each intersection depending on the demand.   

A summary of the cycle lengths for the three loading conditions is shown in Figure 

5.1, where they are ordered in a 3x3 matrix that follows the same intersection arrangement as 

the small diagram in Table 5.1. For example the upper left cell of the matrix shows the cycle 

length (in seconds) for intersection 1, the first cell of the second row shows the cycle length 

Left-turn Right-through Left-turn Right-through

1 6 24 6 28 78 0

2 6 26 6 26 78 74

3 6 32 6 32 90 0

4 6 24 6 30 80 4

5 6 26 6 28 80 68

6 6 28 6 32 86 16

7 6 30 6 34 90 66

8 6 28 6 32 86 0

9 6 36 6 36 98 20

Average 6.0 28.2 6.0 30.9 85.1

1 6 52 6 54 132 28

2 6 46 6 48 120 16

3 6 46 6 48 120 64

4 6 32 6 38 96 56

5 6 42 6 44 112 4

6 8 40 6 48 116 46

7 6 44 6 48 118 96

8 6 40 6 36 102 94

9 6 52 6 52 130 34

Average 6.2 43.8 6.0 46.2 116.2

1 6 52 6 54 132 116

2 6 46 6 42 114 54

3 6 52 6 50 128 122

4 6 46 6 52 124 36

5 8 52 10 52 136 94

6 6 34 6 36 96 88

7 6 48 6 48 122 118

8 6 46 6 42 114 56

9 6 40 6 38 104 0

Average 6.2 46.2 6.4 46.0 118.9

Network 

Loading
Intersection

Green Phase Duration   

E-W direction (s)

Green Phase Duration                  

N-S direction (s)
Time Difference 

(s)**

No Overloading

10% 

Overloading

20% 

Overloading

Cycle Length (s)* 

* Cycle length calculated assuming yellow time=3 seconds, all-red=1 second. Transition from left-turn to through movement did not require all-red

** Time difference indicates the beginning of the first phase of the E-W direction of a signal according to the simulation clock
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for intersection 2, and so on. This Figure offers a quick view at the cycle lengths of the whole 

network.  

   

    

a) No overloading                     b) 10% overloading                   c) 20% overloading  

Figure 5.1. Cycle Lengths (in seconds) from GA for Case 1 

 

Looking at the animation of the network, it was observed that there was only limited 

signal coordination and this was expected since the distance between the intersections was 

2000 ft (long enough to cause platoon dispersion) and there was residual queue at the end of 

most of the green phases (given the oversaturated conditions). Long links, however, did 

accommodate long queues without spilling back to the upstream intersection. Thus, the GA 

optimization resulted in long cycles that reduced the total lost time in the whole study period, 

without a significant increase in the probability of overflow or gridlock. 

 

5.1.2 Evolution Strategies (ES) 

Similar to GA, results from the ES method  were obtained  for three different network 

loading conditions: 1) no overloading, 2) 10% network overloading, and 3) 20% network 

overloading. They are shown in detail in Table 5.2.  

Signal timings obtained with the ES method  were very similar to their correspondent 

strategy with GA in terms of both cycle lengths and green splits. Also, the distribution of 

green times for E-W and N-S movements was balanced.   

Green splits and consequently cycle lengths for the overloading conditions were very 

similar to each other, but different than the no-overloading condition. Green times were 

78 80 90

78 80 86

90 86 98

132 96 118

120 112 102

120 116 130

132 124 122

114 136 114

128 96 104
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longer and ranged between 36 and 54 seconds, but most of the left-turn movements had only 

6 seconds.  

Table 5.2. Signal Timings from ES for Case 1 

 

 

A general view at the cycle lengths from the ES is shown in Figure 5.2. These 

matrices follow the same structure described above for Figure 5.1. The cycle lengths of the 

nine intersections are similar to those from GA. 

 

Left-turn Right-through Left-turn Right-through

1 6 28 6 26 80 2

2 6 26 6 26 78 80

3 6 32 6 32 90 0

4 6 26 6 28 80 8

5 6 28 6 28 82 68

6 6 30 6 30 86 18

7 6 30 6 32 88 70

8 6 30 6 30 86 2

9 6 34 6 32 92 18

Average 6.0 29.3 6.0 29.3 84.7

1 6 52 6 52 130 26

2 6 46 6 46 118 14

3 6 46 6 48 120 60

4 6 36 6 38 100 54

5 6 44 6 44 114 0

6 8 44 6 46 118 40

7 6 46 6 46 118 92

8 6 40 6 36 102 86

9 6 52 6 50 128 28

Average 6.2 45.1 6.0 45.1 116.4

1 6 52 6 54 132 112

2 6 46 6 44 116 50

3 6 52 6 50 128 116

4 6 48 6 50 124 32

5 8 52 6 52 132 98

6 6 40 6 38 104 92

7 6 48 6 48 122 120

8 6 44 6 44 114 60

9 6 38 6 40 104 0

Average 6.2 46.7 6.0 46.7 119.6

No Overloading

10% 

Overloading

20% 

Overloading

* Cycle length calculated assuming yellow time=3 seconds, all-red=1 second. Transition from left-turn to through movement did not require 

** Time difference indicates the beginning of the first phase of the E-W direction of a signal according to the simulation clock

Time Difference 

(s)**

Network 

Loading
Intersection

Green Phase Duration   

E-W direction (s)

Green Phase Duration                  

N-S direction (s) Cycle Length (s)* 
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a) No overloading               b) 10% overloading                  c) 20% overloading 

Figure 5.2. Cycle Lengths (in seconds) from ES for Case 1. 

 

Given that cycle lengths and splits from ES were alike to those from GA, the 

animation showed similar traffic operation conditions as observed with the GA solutions.  

The same reasons described above for GA also applied to the ES case, and are related to the 

long distance between the intersections and frequent residual queues.  

 

5.1.3 Approximate Dynamic Programming (ADP) 

As explained in Chapter 3, the ADP solution generated variable green times and 

phase sequences. Results showed that these green times and phase sequences were very 

similar over time, with some variations depending on the exact arrival pattern of vehicles. 

This was expected given the constant demand at the entry links and also showed consistency 

in the performance of the algorithm. 

The duration of the green phases and the number of times they were displayed in the 

15-minute analysis period are shown in Table 5.3 for the ADP method with and without 

eligibility traces. Note that the intersections are numbered according to the diagram on the 

lower right corner of the figure, and the rows are shaded based on the intersection position in 

the network: a) at the corner – dark shade, b) at the edge, but not at corner – light shade, and 

c) centered inside the network – no shade. Given the symmetry of the vehicle inputs, it was 

expected that signal timings for the rows with the same shade (a, b, or c) were similar.  

 

 

 

80 80 88

78 82 86

90 86 92

130 100 118

118 114 102

120 118 128

132 124 122

116 132 114

128 104 104
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Table 5.3. Signal Timings from ADP with and without Eligibility Traces for Case 1 

 

A series of observations from Table 5.3 are described next. First, the duration and 

frequencies of phases at intersections in the same group (with the same shade) were very 

consistent. For example, for the no-eligibility case, the average duration of the right-through 

phases (for both E-W and N-S directions) at intersections on the corners of the network 

Average Max Min Average Max Min

Left-turn 4 18 16 2 4 18 16 2

Right-through 12 27 30 8 11 28 30 8

Left-turn 4 18 26 2 4 18 26 2

Right-through 12 27 38 8 12 28 38 8

Left-turn 5 17 18 6 5 17 18 6

Right-through 13 25 28 11 13 25 28 11

Left-turn 5 16 22 6 5 16 22 6

Right-through 13 23 32 8 13 23 32 8

Left-turn 4 17 18 6 4 18 18 6

Right-through 12 27 30 7 12 27 30 7

Left-turn 4 19 26 6 4 19 26 6

Right-through 12 27 32 12 12 26 32 12

Left-turn 4 16 14 2 5 16 14 2

Right-through 13 24 32 6 13 24 32 6

Left-turn 5 17 18 4 5 17 18 4

Right-through 13 24 48 3 12 25 48 3

Left-turn 5 15 14 4 5 15 14 4

Right-through 14 21 34 6 14 21 34 6

Left-turn 5 15 14 2 5 15 14 2

Right-through 15 20 26 6 14 22 26 6

Left-turn 5 16 20 6 5 16 20 6

Right-through 13 23 28 11 12 24 28 11

Left-turn 5 16 10 4 5 16 10 4

Right-through 13 24 36 7 13 25 36 7

Left-turn 4 20 14 6 4 20 14 6

Right-through 12 27 32 10 11 28 32 10

Left-turn 4 19 14 6 4 20 14 6

Right-through 11 27 32 14 11 28 32 14

Left-turn 5 15 10 4 5 16 10 4

Right-through 13 24 32 6 13 25 32 6

Left-turn 5 15 20 4 4 16 20 4

Right-through 13 23 34 6 13 24 34 6

Left-turn 4 17 14 6 4 19 14 6

Right-through 12 26 30 8 12 27 30 8

Left-turn 5 18 12 6 4 19 12 6

Right-through 12 26 32 17 12 27 32 17

= Intersection at edge - CORNER (2 entry links)

= Intersection at edge - NOT corner (1 entry l ink)

= Intersection on center of network (no entry links)

1

E-W

N-S

2

E-W

N-S

Green Phase Duration (s)Phase Green Phase Duration (s)

No Eligibility
Frequency           

(in 15 

minutes)

 Eligibility
Frequency           

(in 15 

minutes)

DirectionIntersection

N-S

3

E-W

N-S

4

E-W

N-S

5

E-W

N-S

6

E-W

9

E-W

N-S

7

E-W

N-S

8

E-W

N-S
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ranged between 26 s and 27 s, and each of them were displayed between 11 and 12 times in 

the 15-minute analysis period. Similar observations are true for the eligibility case, and also 

for the left-turn movements.  

Second, the proportional amount of time allocated to the left turn phases was very 

close to the actual ratio of demands. For example, the ratio of the total green time for left-

turn movements (calculated as frequency * average phase duration) to the total green time for 

a given direction (e.g. E-W or N-S) ranged between 0.19 and 0.21, when the actual demand 

ratio was 0.2. This was true for all intersections in both the eligibility and the no-eligibility 

cases.  

Third, the duration of phases with higher number of entry links (which had higher 

demands) was longer than those with lower number of entry links. This was also expected as 

the lost time is reduced with longer green times, resulting in a better queue management at 

the entry links. Also, shorter phases at intersection with lower demand are expected to result 

in lower delays and better queue management. 

Fourth, the frequencies of right-through phases were about three times higher than the 

frequency of the left-turn phases. This indicates that in practice, the strategy suggests 

skipping the left turns every two cycles. Considering that the time allocated to the 

movements is adequate, this solution has the potential to reduce lost time and manage 

adequately the queue lengths.  

Fifth, there is still plenty of opportunities for improvements in the solution since at 

some cycles the green times were too short (in the order of 2 to 4 seconds), which is 

unacceptable in practice. An easy fix to this problem can be applied by constraining the green 

times to a minimum value, but for the purposes of exploring the decision-making of the 

algorithms, there were no constraints in the process.  

In summary, results from ADP suggest that  green times for the left-turn movements  

are about 2/3 of the green times for through movements, but the  frequencies of the left turn 

phases that are about 1/3 of the frequencies the through movement phases. This resulted in a 

correct allocation of green times, but requires the controller to skip the left-turn phase in 

some cycles.  
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5.1.4 Modified ADP – Approximating ADP signal timings to fixed cycles and splits 

Cycle lengths or green times were not fixed when ADP is used (with or without 

eligibility traces). The ADP results were used to find approximate values that resemble fixed 

time signal operations. The signal timings resulted from this approximation is called 

Modified ADP. This allowed for direct comparisons of the results based on the Modified 

ADP with GA and ES results. It also provided solutions that could be implemented in the 

field with standard traffic controllers.  The fixed green times and cycle lengths based on the 

solutions provided by ADP (without eligibility traces) were estimated using three different 

approaches, as described next:  

1) Modification 1: Left turn phases were displayed in all cycles. Green times for 

through movements were based on averages from ADP. Green times for left-turn 

phases were estimated from those found in ADP assuming  that they will be displayed 

in all cycles. This resulted in green times as low as 5 seconds in some cases. When 

the estimated left turn greens were below 7 seconds, all green times were multiplied 

by a factor that increased the minimum left-turn green time to 7 seconds.  

2) Modification 2: Similar to Modification 1, but instead of multiplying all green times 

by a factor, they were added the amount needed to increase the minimum left-turn 

green time to 7 seconds. 

3) Modification 3: This approximation did not assume that  the left-turn phases will be 

displayed in every  cycle. It considered the frequency of displaying the left turn 

phases. Green times for through movements were based on averages from ADP.  

The exact splits and cycle times for the three ADP modifications are shown in Figure 

5.3. There are several key observations to note about the signal timings found in all ADP 

approximations: 

1) The cycle lengths within each of the three ADP modifications are very consistent 

with each other.  

2) They follow the same symmetry of the traffic inputs, so that signal timings of the 

intersections at the corners are similar (intersections number 1, 3, 7, and 9), 

intersections with only one entry link are also similar (intersections number 2, 4, 
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6, and 8), and the timings of the intersection centered in the network (intersection 

#5) have shorter cycles and splits.  

3) The splits for the two competing directions of traffic (E-W and N-S) are balanced. 

This is according to actual traffic demands.  

4) The ratio of splits for the left-turn and the through movements are according to 

the actual demand ratios (80/20 for through/left traffic). 

On the other hand, the three solutions differed significantly in terms of the total cycle 

length and duration of the splits, as shown in Figure 5.3, and are analyzed in the next section. 
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Explanatory key for splits and cycle lengths in part b) 

 

Green splits and cycle lengths for ADP modifications 

Figure 5.3. Signal Timings from ADP Modifications for  Case 1 
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In a similar way that it was described for the GA and ES solutions, the cycle length of 

the intersections from the three ADP modifications are summarized in Figure 5.4 below. 

Note that the cycle lengths for the ADP modification 3 refer to the cycles that displayed the 

two left-turn phases, not the cycles without the phases.   

   

a) ADP Modification 1            b) ADP Modification 2           c) ADP Modification 3 

Figure 5.4. Cycle Lengths (in seconds) for Modified ADP Solutions in Case 1. 

 

It is also observed that the cycle lengths follow a similar trend to that observed for the 

original ADP results, with longer cycles for the intersections at the corners of the network 

(with 2 entry links), followed by the rest of the intersections along the borders of the network 

(1 entry link each), and the shortest cycle for the intersection located at the center.  

 

5.2 Case 2 - Modified Springfield network in close-to-saturation conditions 

The modified Springfield network, with more realistic and diverse settings, was also 

used to determine the performance of the three methods. Case 2 represents volume levels 

near saturation at some of the entry nodes (volumes is 750 vphpl). Recall that a two-phase 

signal was used for all nodes and left turns were permitted from the left-turn pockets during 

the solid green phase. The signal timings for such conditions are described next.  

5.2.1 Genetic algorithms (GA) 

GA found signal timings with almost identical cycle lengths and even signal time 

distribution for E-W and N-S direction, as shown in Table 5.4. All cycle length were 72 

seconds long except at five nodes (where they either were 2 or 4 seconds greater), and green 

times were predominantly 32 seconds long, also with a few exceptions (34 or 36 seconds 

long). 

101 92 104

92 82 91

100 91 99

90 84 93

84 81 82

90 83 90

94 85 96

86 77 84

93 85 93
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Table 5.4. Signal Timings from GA for  Case 2 

 

Analysis of the values in the Starting Time of the First Cycle indicated that there was 

signal coordination between some of the intersections, allowing for good signal progression 

in some of the corridors. Figure 5.5 shows the corridors in which good progression was 

found. This figure was created based on both the time differences and the animations from 

the simulation packages. The segments in which coordination was observed are noted with 

arrows, indicating at one end (diamond shape) the starting point of the vehicle movement 

from a stop position, and at the other end (arrow shape) the point where the vehicle cleared 

the last intersection without the need to stop. The coordinated movements are shown separate 

for E-W and N-S directions.  

 

 

E-W Direction N-S Direction

1 32 32 72 24

2 32 32 72 40

3 32 32 72 64

4 32 32 72 0

5 32 32 72 6

6 32 32 72 64

7 32 32 72 64

8 32 32 72 64

9 32 32 72 64

10 32 32 72 4

11 32 32 72 64

12 32 32 72 68

13 34 32 74 16

14 32 36 76 66

15 32 32 72 18

16 32 34 74 70

17 32 36 76 66

18 32 34 74 26

19 32 32 72 70

20 32 32 72 66

Average 32.1 32.6 72.7

Intersection Cycle Length (s)* 
Time Difference 

(s) **

Green Phase Duration (s)

GA

* Cycle length calculated assuming yellow time=3 seconds, all-red=1 second. Transition from left-turn to 

through movement did not require all-red

** Time difference indicates the beginning of the first phase of the E-W direction of a signal according to the 

simulation clock

Strategy
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                    N-S direction          E-W direction 

Figure 5.5. Coordination from GA results for Case 2 

 

From Figure 5.5 a few observations are made. The signal timings allowed 

coordination to some degree in both directions of travel, but did not provide coordination for 

the entire length of the arterials, except for the corridor shown by arrow 1A. In general, the 

streets with three lanes (both E-W and N-S) had good progression, with about one stop 

expected for those within the most favorable bandwidths. Some of the smaller streets also 

had coordination to some degree, as observed in arrows 5A through 10A and 5B through 

10B.    

 

5.2.2 Evolution strategies (ES) 

Timings from ES were almost identical to those from GA in terms of cycle lengths 

and duration of green times. Average values at the bottom of tables 5.4 and 5.5 are almost 

identical, showing that there was also similar distribution of the right of way in the two 

methods. However, there was more variation in the green times in the ES solution compared 

to GA, as most of them were not 32 seconds but ranged between 30 and 34 seconds.  

 

 

1A

3A

4A

5A 6A

7A 8A 9A 10A

1B 2B

3B 4B

5B 6B

8B

9B
7B

10B
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Table 5.5. Signal Timings from ES for Case 2 

 

 

The offsets in ES were also similar to those from GA, with differences in the order of 

at most 8 seconds (for intersections 7 and 14) and 18 seconds for intersection 15. This 

resulted in slightly different coordination patterns, as shown in Figure 5.6. Note that fewer 

movements are coordinated in comparison with GA, which ultimately resulted in slightly 

higher delays and number of stops, as it is described in detail in later sections. 

E-W Direction N-S Direction

1 30 34 72 28

2 32 32 72 40

3 30 34 72 68

4 34 30 72 6

5 32 32 72 8

6 34 30 72 70

7 30 32 70 0

8 32 32 72 70

9 32 32 72 70

10 34 30 72 8

11 34 30 72 68

12 32 32 72 68

13 34 32 74 18

14 30 34 72 2

15 30 32 70 0

16 32 32 72 2

17 32 34 74 70

18 32 34 74 32

19 30 32 70 0

20 34 32 74 70

Average 32.0 32.1 72.1

Strategy Intersection Cycle Length (s)* 
Green Phase Duration (s)

* Cycle length calculated assuming yellow time=3 seconds, all-red=1 second. Transition from left-turn to 

through movement did not require all-red

** Time difference indicates the beginning of the first phase of the E-W direction of a signal according to the 

simulation clock

Time Difference 

(s) **

ES
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              N-S direction          E-W direction 

Figure 5.6. Coordination from ES results in Case 2 

 

5.2.3 Approximate dynamic programming (ADP) 

A summary of the signal timings observed with the ADP strategy are shown in Table 

5.6. Similar to the results for Case 1, the range of the average green times of the 20 

intersections is not very wide (from 16 seconds to 24 seconds), but their maximum and 

minimum values varied significantly.  

The distribution of the green times favored links that carried the entry volume, by 

providing up to 4 seconds of green time in comparison to the opposing direction of travel. 

Note that in cases where the opposing traffic was greater than the entry volume, priority was 

given by ADP to the opposing traffic, as it was the case at intersections 18 and 19.  

In comparison to GA and ES, the average green times for ADP are significantly 

lower, which in turn, resulted in cycle lengths that were about 20 seconds.  

 

 

 

1A

2A

3A

5A

6A
4A

8A

9A

10A

1B 2B

3B

4B

6B

7B
5B

8B

7A
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Table 5.6. Summary Signal Timings from ADP for Case 2  

 

Average Max Min

E-W 16 22 9 21

N-S 19 23 9 21

E-W 18 24 11 21

N-S 16 22 10 21

E-W 19 23 13 20

N-S 17 22 12 20

E-W 19 23 11 20

N-S 18 24 12 20

E-W 18 23 9 21

N-S 18 22 9 20

E-W 17 22 10 21

N-S 18 22 9 21

E-W 19 22 11 20

N-S 18 23 12 20

E-W 18 22 13 20

N-S 19 23 13 20

E-W 17 23 10 21

N-S 19 24 11 21

E-W 18 23 10 21

N-S 18 23 9 21

E-W 19 23 12 20

N-S 18 23 12 20

E-W 19 23 11 20

N-S 18 23 12 20

E-W 19 25 12 18

N-S 22 36 15 18

E-W 18 24 10 19

N-S 22 51 9 19

E-W 18 22 12 21

N-S 19 23 13 20

E-W 18 22 12 20

N-S 19 23 13 20

E-W 17 24 11 21

N-S 17 23 11 21

E-W 17 23 10 21

N-S 18 25 11 21

E-W 18 25 10 18

N-S 24 42 17 18

E-W 17 23 11 21

N-S 18 23 12 21
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5.2.4 Modified ADP – Approximating ADP signal timings to fixed cycles and splits 

The modified ADP for Case 2 was found by simply using the average duration of the 

green times as the input for fixed signal timings. Since only two phases were available, and 

the average green times were not lower than the minimum green time (7 seconds), the 

options used for  Case 1 (modifications 1, 2, and 3) were not needed. The resulting signal 

timings for modified ADP are shown in Table 5.7. 

 

Table 5.7. Summary Signal Timings from Modified ADP for Case 2 

 

 

5.3 Case 3 - Modified Springfield network in oversaturated conditions 

5.3.1 Genetic algorithms (GA) 

The signal timings obtained with GA for Case 3 are shown in Table 5.8. These 

settings were significantly different from those found for Case 2 (with lower vehicle 

E-W Direction N-S Direction

1 16 19 43

2 18 16 42

3 19 17 44

4 19 18 45

5 18 18 44

6 17 18 43

7 19 18 45

8 18 19 45

9 17 19 44

10 18 18 44

11 19 18 45

12 19 18 45

13 19 22 49

14 18 22 48

15 18 19 45

16 18 19 45

17 17 17 42

18 17 18 43

19 18 24 50

20 17 18 43

Average 18.0 18.8 44.7

Strategy
Green Phase Duration (s)

* Cycle length calculated assuming yellow time=3 seconds, all-red=1 second. 

Transition from left-turn to through movement did not require all-red

Cycle Length (s)* 

Mod ADP

Intersection
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demands). In Case 3, the entering volumes were metered more often with shorter green 

times, preventing the oversaturation of the links inside the network.  

 

Table 5.8. Signal Timings from GA for Case 3 

 

In addition, cycle lengths were significantly different from each other (unlike in Case 

2).  Signal coordination was found only at a few locations, as it is observed in Figure 5.7. 

E-W Direction N-S Direction

1 24 28 60 4

2 24 40 72 4

3 24 40 72 16

4 24 38 70 66

5 24 26 58 16

6 26 24 58 6

7 26 26 60 4

8 50 24 82 0

9 48 24 80 8

10 26 32 66 0

11 26 36 70 8

12 24 38 70 18

13 40 24 72 8

14 36 32 76 32

15 40 32 80 68

16 48 24 80 16

17 24 24 56 0

18 24 24 56 0

19 24 46 78 64

20 24 48 80 0

Average 30.3 31.5 69.8

* Cycle length calculated assuming yellow time=3 seconds, all-red=1 second. Transition from left-turn to 

through movement did not require all-red

** Time difference indicates the beginning of the first phase of the E-W direction of a signal according to the 

simulation clock

Cycle Length (s)* 
Time Difference 

(s) **
Strategy Intersection

Green Phase Duration (s)

GA
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Figure 5.7. Coordination from GA results in Case 3 

 

5.3.2 Evolution strategies (ES) 

Signal timings from ES are described in Table 5.9. The cycle lengths were shorter for 

Case 3 compared to Case 2, following the same trends found in the GA solution. On the 

average, there was an even distribution of green times for E-W and N-S directions, but the 

green times varied significantly between the two opposing direction of the same intersection, 

favoring some movements over the others. Most notably, one-way corridors with three lanes 

were favored over the others, which resulted in green times for such movements that almost 

doubled the opposing direction. This was the case for the two upper corridors in the E-W 

direction, and the west-most corridor in the N-S direction.  
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Table 5.9. Signal Timings from ES for Case 3 

 

 

On the other hand, given that cycle lengths were in most cases not similar to each 

other, signal timings did not result in a significant number of movements being coordinated. 

This is shown in Figure 5.8, where the coordinated links are indicated by arrows.  

E-W Direction N-S Direction

1 22 22 52 20

2 22 42 72 0

3 22 42 72 0

4 22 34 64 0

5 22 26 56 20

6 26 22 56 4

7 26 26 60 4

8 48 22 78 0

9 38 22 68 18

10 22 30 60 2

11 22 28 58 2

12 28 28 64 26

13 40 22 70 6

14 38 30 76 30

15 40 22 70 10

16 48 28 84 0

17 22 22 52 8

18 22 22 52 4

19 22 38 68 0

20 22 46 76 0

Average 28.7 28.7 65.4

Cycle Length (s)* 
Time Difference 

(s) **

* Cycle length calculated assuming yellow time=3 seconds, all-red=1 second. Transition from left-turn to 

through movement did not require all-red

** Time difference indicates the beginning of the first phase of the E-W direction of a signal according to the 

simulation clock

ES

Green Phase Duration (s)
Strategy Intersection
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Figure 5.8. Coordination from ES results in Case 3 

 

5.3.3 Approximate dynamic programming (ADP) 

A summary of the signal timings for ADP for Case 3 are shown in Table 5.10. 

Average green times were longer than those for Case 2, and in the order of 17 s to 28 s. The 

maximum and minimum green times had significant variation, with values as low as 6 s and 

as high as 54 s.  

Priorities for green times were not as clear as in Case 2, and some of the arterials 

carrying greater volume (in particular the three-lane arterials running N-S on the west side of 

the network) did have in some cases the same or even lower green times than their opposing 

volumes. This may be the result of greater vehicles metering, which could result in lower 

probability of blockages due to queue spillbacks. However, some priorities were given to 

other arterials, mainly to the N-S four-lane two-way arterials on the right side of the network 

(intersection numbers 13 to 16, and also the stretch from intersection 18 to 20). 

32 4

1
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 Table 5.10. Summary Signal Timings from ADP for Case 3 

 

Average Max Min

E-W 19 26 10 20

N-S 19 37 8 20

E-W 19 26 9 19

N-S 20 36 9 19

E-W 23 35 18 17

N-S 20 32 12 18

E-W 21 31 12 19

N-S 18 24 10 19

E-W 18 27 8 20

N-S 19 28 8 20

E-W 19 26 10 21

N-S 17 25 6 21

E-W 19 25 8 19

N-S 21 39 9 19

E-W 22 29 16 18

N-S 22 37 13 18

E-W 22 31 17 17

N-S 23 40 13 17

E-W 18 25 8 20

N-S 19 29 8 20

E-W 21 31 13 18

N-S 20 33 10 19

E-W 19 27 9 20

N-S 18 28 9 20

E-W 21 26 14 16

N-S 27 46 17 16

E-W 20 26 13 16

N-S 28 53 15 16

E-W 20 30 10 18

N-S 23 40 13 18

E-W 21 29 14 17

N-S 25 41 19 17

E-W 22 34 17 17

N-S 22 30 19 17

E-W 18 24 9 19

N-S 22 38 12 19

E-W 21 31 12 16

N-S 28 54 16 16

E-W 21 28 14 16

N-S 26 42 20 16

19

20
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14
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16
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18

12
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4
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Intersection Direction
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5.3.4 Modified ADP – Approximating ADP signal timings to fixed cycles and splits 

Similar to Case 2, the modified ADP for Case 3 was found by simply using the 

average duration of the green times as the input for fixed signal timings. Thus for the signal 

timings for modified ADP, the reader could observed the average values in Table 5.11.  

 

Table 5.7. Summary Signal Timings from Modified ADP in Case 3 

 

 

  

E-W Direction N-S Direction

1 19 19 46

2 19 20 47

3 23 20 51

4 21 18 47

5 18 19 45

6 19 17 44

7 19 21 48

8 22 22 52

9 22 23 53

10 18 19 45

11 21 20 49

12 19 18 45

13 21 27 56

14 20 28 56

15 20 23 51

16 21 25 54

17 22 22 52

18 18 22 48

19 21 28 57

20 21 26 55

Average 20.2 21.9 50.1

Green Phase Duration (s)

Mod ADP

Strategy Intersection Cycle Length (s)* 

* Cycle length calculated assuming yellow time=3 seconds, all-red=1 second. Transition 

from left-turn to through movement did not require all-red
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CHAPTER 6.  PERFORMANCE OF THE DIFFERENT STRATEGIES 

The performance of the networks under various signal timings were compared using a 

series of measures of performances (MOP) that included traffic-related issues, computational 

effort, and ease of use. Some of the MOP were focused on the queue lengths and potential 

queue overflows (causing de-facto red) since the networks were oversaturated.  

This chapter is divided into three sections. In the first section the findings of the small 

oversaturated network are presented. In the next section the results for the modified 

Springfield network in close-to-saturation condition is presented, followed by a scenario 

when it is operating in oversaturated condition. 

It should be noted that to determine any of the MOP the signal timing parameters 

found by each method (GA, ES, or ADP) were used as an input to VISSIM with a total study 

period of 15 minutes. To take the internal variability of VISSIM into account, 31 simulation 

runs were made and the MOPs presented below reflect the results of those 31 runs.  

6.1 Case 1 - Network of 9 intersections in oversaturated conditions    

6.1.1 Average delay and network saturation 

The first MOP that was analyzed was the average delay of all vehicles. A summary of 

the range of the average delay from the 31 replications for each of the methods is shown in 

Figure 6.1. It also shows the number of vehicles in the network at the end of the simulation 

period (as a measure of network congestion). 

This analysis included the delay for  vehicles that could not enter the network due to 

long queues in the entry links. This factor was important in comparing solutions from 

different methods since the inner links with less congestion show lower delay but at the cost 
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of not allowing vehicles to enter the network. This consideration also works in favor of 

fairness to all strategies and adds a more realismto the calculations, accounting for metering 

effects at the edges of the network. Thus, the standard estimation of delay performed by 

VISSIM (the difference between the ideal travel time -no traffic, no control- and the actual 

travel time experienced by the drivers) was modified to include the delay of vehicles waiting 

to enter the network.   

 

Figure 6.1. Average Delay and Network Congestion for Case 1 

 

Figure 6.1 shows similar delays for the ADP (and its modifications) as well as the GA 

and ES with no network overloading - with average delays per vehicle around 220 seconds. 

The performance of the GA and ES algorithms with overloading options was not as 

favorable, with average delays close to 255 seconds.  

The contribution of delay from vehicles outside the network was very low and 

represented less than 4% of the total delay, as it is shown in Table 6.1. In general, all 

strategies managed to keep the back of the entry queues in such way that only a few vehicles 

were delayed outside of the network. The values from Table 6.1 were found by tracking the 
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queues and the blockage at the entry links, and assuming a constant (expected) arrival rate of 

one vehicle every 3.6 seconds based on entry volumes (1000 vehicle per hour per lane).  

Figure 6.1 also shows that the total delay increased with the number of vehicles in the 

network at the end of the simulation period, as the bars in the figure follow the same trends 

as the delay ranges. Thus, as the saturation level of the network increased, the total average 

delay per vehicle also increased.  

These considerations suggest that there should be an optimal level of network 

saturation in order to achieve low average delays, high throughputs, and good queue 

management. 

 

Table 6.1. Delay of Vehicles Outside the Network for Case 1 

 

6.1.2 Network throughput 

The network throughput was defined as the total number of trips completed, or in 

other words, the total number of vehicles that had left the network at the end of the analysis 

period. A summary of the throughput for all strategies is shown in Figure 6.2.  

In general, signal timings that result in a greater number of vehicles completing their 

trips are more desirable. GA, ES, ADP without eligibility traces and its modifications, as well 

ADP with eligibility traces, resulted in similar network throughput that ranged from 2220 to 

2320 vehicles. It is noted that the expected demand for the 15-minute analysis period was 

3000 vehicles, indicating a hard-to-reach upper bound for the number of processed vehicles. 

ADP               

(No Eligib.)

ADP 

(Eligibil ity)

ADP 

Mod1

ADP 

Mod2

ADP 

Mod3

No 

overloading

Overloading 

10%

Overloading 

20%

No 

overloading

Overloading 

10%

Overloading 

20%

Min 174.44 219.24 225.4 281.96 231.84 199.92 101.08 119 194.88 127.96 116.76

Average 268.0413 292.3 321.9 357.0 304.6 274.6 199.5 200.0 293.1 218.9 227.8

Max 335.44 375.76 390.6 412.16 366.24 357 274.12 283.64 370.16 292.04 298.76

Min 8194.48 13509.44 12737 15591 10100 9971.92 4509.12 5650.4 9628.64 6688.08 5486.32

Average 17359.2 21458.9 21030.9 ####### 18464.3 18489.7 10918.2 10816.4 17195.8 12350.0 12616.1

Max 26326.72 35735.28 30878 34855 26565 37978.64 16252.88 19422.48 25424 17922.24 19791.52

2.6% 3.2% 3.2% 3.5% 2.9% 2.8% 1.4% 1.4% 2.6% 1.6% 1.6%

Cummulative delay (s) 

of those vehicles 

delayed prior to enter

Average Ratio Delay vehicles 

outside/Total delay

ADP GA

Vehicles delayed 

outside of the network 

(at entry points)

ES
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Figure 6.2. Network Throughput (Trips Completed) for Case 1 

A closer look at the number of vehicles inside the network revealed that the network 

increased its saturation levels over time, since the number of vehicles processed was lower 

than the actual demand. This was expected since the arriving volume at the intersections with 

two competing entry links (the four intersections at the corners) was about 2000 vph, which 

exceeds the actual capacity of signalized intersections with single lane approaches. 

 

6.1.3 Average speeds 

Trends from average speed data were very similar to those from the vehicle 

throughput, as it can be seen from Figure 6.3. Higher speeds were obtained with the ADP 

approaches and the GA and ES without network overloading, and they were in the order of 

10.3 mph to 10.7 mph. Recall that the desired speed of the drivers in the network was 30 

mph. Based on the findings, it is easy to observe that in general lower delays and greater 

throughput resulted in higher average speeds.  
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Figure 6.3. Average Vehicle Speeds for Case 1 

 

6.1.4 Average number of stops and stopped delay 

The average number of stops and the average stopped delay per vehicle, are shown in 

Figure 6.4. Note that there was an inverse relation between the number of stops and the 

stopped delay, as expected. This was the case since lower number of stops were obtained 

when green times were longer, but this also resulted in vehicles having to wait longer for the 

next cycle to begin  - and for an opportunity to speed up again. In fact, the GA and ES 

solutions with network overloading did result in lower number of stops, but higher delays 

and lower throughputs than other solutions. 
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Figure 6.4. Number of Stops and Average Stopped Delay for Case 1 

 

It was also observed that the average stopped delay was directly proportional to the 

total average delay, thus the ratio of stopped to total delay increased as the stopped delay 

increased. This is a sign of added congestion in the system (vehicles stopped completely for 

longer time periods), and it was found mainly in the overloading scenarios from the GA and 

ES. Details are shown in Figure 6.5, below. 
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Figure 6.5. Ratio of Stopped Delay to Total Delay for Case 1 

 

Overall, it was found that a better strategy was not to minimize the number of stops, 

but to minimize the total stopped delay and manage the length of the queues.    

 

6.1.5 Efficient use of green 

Another sign of good signal timing could be defined in terms of the amount of green 

time that is not used to process the greatest number of vehicles, in other words, when 

vehicles do not cross the stop bar at saturation flow. This is likely to be the case when (in 

oversaturated conditions) the entire queue before the end of the green has been completely 

discharged.  

Therefore, the length of the queue was monitored for entry and non-entry links and 

for through and left-turn movements, recording the amount of time that the queue was 

completely dissipated. Results are shown in Figures 6.6 and 6.7. 
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Figure 6.6. Percentage of Time that Queues were Zero at Entry Links for Case 1 

 

Figure 6.7. Percentage of Time that Queues were Zero at Non-Entry Links for Case 1 

 

In Figures 6.6 and 6.7, lower percentages of queue lengths equal to zero was 

considered desirable. Note that the ADP strategies (eligibility and no-eligibility) were in 
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general more efficient at preventing serving approaches with queue equals zero. This is 

expected since the algorithms adjusted the signal timing settings in real time and not based 

on average performance, which was the case for the other strategies.   

 

6.1.6 Queue overflows 

Carefully managing the queues is extremely important in an oversaturated network to 

ensure a more efficient operation. Particular attention should be given to the back of queues 

so that queue overflows do not occur. Queue overflow blocks the upstream intersection and 

prevents vehicles from discharging, creating a “de-facto red” situation. Queue overflows can 

create a gridlock in the network. A gridlock significantly deteriorates the performance of 

networks and results in longer delays and lower throughput. The occurrence of queue 

overflows was monitored for all signal timing solutions, by determining if the back of queue 

at entry and non-entry links reached the upstream intersections (or the end of the link). 

Results are shown in Figures 6.8 and 6.9. 

 

 

Figure 6.8. Potential Queue Overflows at Non-Entry Links for Case 1 
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Figure 6.9. Potential Queue Overflows at Entry Links for Case 1 
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strategies. Table 2 shows the average, maximum, and minimum number of vehicles with 

delays (per link) greater than 300 seconds, as well as the maximum delay in a single link, for 

all strategies. 

Table 6.2. Maximum Delays per Link and Vehicles with Delays Greater than 300 Seconds 

for Case 1 

 

Statistic
Max Delay in 

one link (s)

# of Vehicles 

with delay 

>300s in one 

link

Min. 422 94

Ave. 513 152

Max. 664 204

Min. 451 117

Ave. 524 171

Max. 607 245

Min. 393 22

Ave. 491 79

Max. 612 166

Min. 391 31

Ave. 499 79

Max. 670 137

Min. 372 40

Ave. 498 109

Max. 658 167

Min. 527 135

Ave. 671 231

Max. 832 319

Min. 786 463

Ave. 901 520

Max. 1094 591

Min. 769 464

Ave. 890 519

Max. 1017 591

Min. 531 136

Ave. 652 219

Max. 780 281

Min. 762 474

Ave. 898 519

Max. 1070 606

Min. 764 471

Ave. 890 538

Max. 1045 592

ES

No 

overloading

10% 

overloading
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overloading
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overloading
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No Eligibil ity

Strategy
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No 

overloading
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From Table 6.2, the best worst-case delays are obtained with the ADP modifications 

2 and 3, where it was very rare that a vehicle had delays of more than 300 seconds on a 

single link. At the other end of the results, the overloading options with GA and ES had the 

highest maximum delays and number of vehicles with delays greater than 300 seconds, 

showing very unfavorable conditions for some of the drivers in the network.  

It is also important noting that for all strategies, all vehicles that experienced delays 

greater than 300 seconds were left turners. Thus, all strategies clearly favored through 

movements as opposed to left turns. This was expected since ratio of the through vehicles to 

left-turners was 80/20, but in oversaturated conditions it also resulted in delays that seemed 

(in some cases) very high for real-world applications.   

 

6.2 Case 2 - Modified Springfield network in close-to-saturation conditions 

In a similar way that the results were presented for Case 1 (the small network of nine 

oversaturated intersections) MOEs are also presented in this section for Case 2 in the 

modified Springfield network. In this case it is assumed that entry volume is 750 vehicles per 

hour per lane at the entry links. For Case 2, ADP with no eligibility traces, a modified ADP, 

GA with no overloading, and ES with no overloading were used. 

Average delay per vehicle, 10th and 90th percentiles delay, min, max, and the number 

of vehicles in the network at the end of analysis period are shown in Figure 6.10.  
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Figure 6.10. Average Delay and Network Congestion for Case 2  
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The importance of vehicles delayed outside the network due to queues at the entering 

links was minimal with respect to the total delay. The higher average value was for GA, with 

a ratio of outside delay to total delay of 1.7%, and the lowest was for ADP with an average of 

0.2%.     

0

20

40

60

80

100

120

140

160

180

800

900

1000

1100

1200

1300

1400

1500

1600

1700

ADP MOD ADP GA ES

A
v

e
ra

g
e

 d
e

la
y

 p
e

r 
v

e
h

ic
le

 (
s)

 -
fr

o
m

 o
n

e
 s

im
u

la
ti

o
n

 r
u

n

N
u

m
b

e
r 

o
f 

v
e

h
ic

le
s

10th percentile average delay

90th percentile average delay

Max

Min

Ave

Delay values include 

delay inside and 

outside of the network



69 

 

In relation to the number of vehicles in the network at the end of the analysis period 

(see the bars in Figure 6.10), the modified ADP allowed about 20% more vehicles than the 

other methods (with an average of 1100 vehicles), increasing the network load. This may 

result in higher probability of queue spillbacks as the signal timings are fixed, but it may also 

reduce delays outside of the network.  

The network throughput in the 15-minute evaluation period is shown in Figure 6.11. 

Note how the averages for all four methods were very similar, but higher fluctuations were 

found for modified ADP and GA. This is due to the same stochastic effects that affected the 

average delays, mentioned above. Similar to average delay, three of the seeds created 

extremely unfavorable network conditions for GA. Similar to delay, the 10th percentile 

throughput was greater than the average throughput.   

 

 

Figure 6.11. Network Throughput (Trips Completed) for Case 2 
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Note that the upper bound for this value was the number of vehicles in the network 

after reaching equilibrium (~500 vehicles) plus the actual demand for the study period 

(totaling 5062 vehicles on average – this number is the result of 750 vphpl per link in 27 

entering lanes for 15 minutes), which was in the order of 5500 vehicles. 

 

 

Figure 6.12. Average Vehicle Speeds, number of stops, and stopped delay for Case 2  
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The performance of the four methods in terms of the average number of stops and the 

average speeds is shown in Figure 6.12. The signal timings from GA and ES showed 

improved performance over ADP and modified ADP for both MOPs, mainly due to the 

effects of signal coordination. As presented in Chapter 5, GA and ES coordinated many of 

the movements in the modified Springfield network when the volumes at the entry links were 

750 vehicles per hour per lane. Therefore, higher speeds and less number of stops were 

observed, with the exception of a three cases in which blockages prevented vehicles from 

crossing an intersection.  

 

The animation from the simulation packages confirmed the coordination found by 

GA and ES. Similar cycle lengths, longer green times and adequate offsets between adjacent 

intersections also provided such indications. Some corridors were more benefited than others. 

For example the corridors with three lanes per direction (say, the two upper corridors in the 

E-W direction in the modified Springfield network) were an example of this situation. Thus, 

the GA algorithm favored directions that had entry links with greater number of lanes, as this 

would increase the throughput and reduce the overall number of vehicles queued.    

Coordination was not explicitly a goal in the ADP formulation, as communication 

between intersections was not allowed, but given the variations in cycle lengths from one 

intersection to the other, coordination emerged at some points of the study period and also 

favored the performance of the signals to some (but lesser) degree.  

Similar to the small network, the queue lengths were also monitored for this case, but 

since the entering volumes were lower than the capacity of the network, the results showed 

favorable performances for the average simulation run. More specifically, the percentage of 

time that the average links reached more than 80% of their capacity (both the links carrying 

entering volumes and those inside the network) was lower than 5% for all strategies.  

On the other hand, the links were also monitored for queues equal to zero. This could 

be an indicator of proper distribution of green times between competing volumes and also of 

effective use of green. Results showed that on the average the left-turn pockets did not have 

queue for more than 70% of the time, and this measure was in the order of 20% for the 
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through links at the entering points and close to 40% for the other links. All strategies 

showed similar performance in this regard. 

Overall, results show that the four methods had acceptable performance in this case, 

with volumes near saturation at some of the intersections at the edge of network. However, 

GA and ES had better average performances mostly due to the explicit management of 

coordination, which takes place by incorporating the offsets into the optimization process. 

This was observed in the lower number of stops, greater average speeds, and lower delays.  

 

6.3 Case 3 - Modified Springfield network in oversaturated conditions 

In the modified Springfield network, when the traffic at entry points was 1000 

vehicles per hour per lane, GA and ES resulted in lower average delays per vehicle inside the 

network than ADP and modified ADP as presented in Figure 6.13.a. However, these two 

methods metered vehicles at the entry points and did not let them into the network. In fact, 

that was the reason of a lower average delay inside the network. Taking into account the 

effect of vehicles delayed before they entered the network, resulted in the delays in Figure 

6.13.b. As shown in the figure, ADP and modified ADP resulted in lower total average delay 

and consequently greater number of vehicles in the network.  

 

 



73 

 

 

Average delay inside and outside of the network 

 

Average Delay and Network Congestion 

Figure 6.13. Average Delay and Network Congestion for Case 3. 
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significantly more than that for ADP and modified ADP, showing the effect of metering 

traffic at the entry points. 

Table 6.3. Delay of Vehicles Outside the Network for Case 3 

 

 

Similar to delay, since GA and ES metered the vehicles at the entry points, the 

number of vehicles that were processed by them was lower than that of ADP. System 

throughput for modified ADP was similar to that for GA and ES and lower than ADP. In 

Figure 6.14 the network throughput for different algorithms is shown.  

 

Figure 6.14. Network Throughput (Trips Completed) for Case 3 
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Since GA and ES did not let too many vehicles enter the network, they could 

maintain better level of service inside the network as the average speed for GA and ES 

methods was higher than those for ADP and modified ADP cases. In addition, the number of 

stops inside the network for GA and ES methods was lower than those for ADP and modified 

ADP algorithms. In fact, GA and ES could coordinate some of the signals in the 

oversaturated condition as discussed in Chapter 5. Average speeds, number of stops, and 

stopped delay are shown in Figure 6.15.  

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6.15. Average 
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. Average Vehicle Speeds, number of stops, and stopped delay
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a gridlock which leads to significant increase in delays and loss in system throughput. Figure 

6.16 shows maximum queue length at entry links of the network.  

 

Figure 6.16. Potential Queue Overflows at Entry Links for Case 3 
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Figure 6.17. Potential Queue Overflows at NON-Entry Links for Case 3 

In addition to the general measures of performance, the extreme values of the delay 

were also monitored. This analysis reveals the least-favored movements and the amount of 

delay for vehicles in such routes, as well as potential limitations on the applicability of 

certain strategies. Table 6.4 shows the average, maximum, and minimum number of vehicles 

with delays (per link) greater than 300 seconds, as well as the maximum delay in a single 

link, for all strategies.  
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Table 6.4. Maximum Delays per Link and Vehicles with Delays Greater than 300 

Seconds for Case 3 

 

  

6.4 Computational effort 

The amount of time required to obtain the solutions presented in this section was also 

considered. Recall that the GA and ES methods are based on a search of the solution space 

and select one (solution) for the entire study period, whereas ADP learns over time based on 

the states that are visited and makes a decision every 2 seconds.  

This gives ADP a clear advantage over the GA and ES because the algorithm has a 

solution soon after the learning process starts (it is an any-time algorithm), and the action-

selection convergence was achieved in short time periods. In fact, the simulations were 

initiated with no previous learning and the ADP tables accumulated the value of each state as 

the 31 replications were executed in VISSIM. The approximated amount of time needed for 

the ADP to find the solutions shown in this study was in the order of 4 hours of CPU time 

using a PC with dual-core processors (2.4 GHz) and 4GB of memory. This was the time 

needed for VISSIM to complete the 31 simulation runs, thus ADP did not require any prior 

training to find the solutions.  

Strategy Statistic
Max Delay in 

one link (s)

# of Vehicles 

with delay 

>300s in one 

link

Min. 288 0

Ave. 421 26

Max. 616 117

Min. 328 1

Ave. 480 60

Max. 764 390

Min. 379 10

Ave. 530 57

Max. 754 142

Min. 371 17

Ave. 498 41

Max. 728 93

MOD ADP

ADP

GA

ES
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GA and ES each make 60,000 simulation runs to find near optimal solution. Each 

simulation run in CORSIM needs around 5 seconds of CPU time. As a result, to find near 

optimal answer, GA and ES required around 300,000 seconds or around 3.5 days. GA and ES 

runs were performed on a PC with quad-core processors (2.67 GHz) and 3 GB of memory. It 

is noted that for the same network, each VISSIM simulation run takes 4 minutes and this was 

the main reason of not choosing VISSIM to interface with GA and ES.  

 

6.5 Knowledge requirements 

The  knowledge and time needed to utilize the methodologies of this study, in terms 

of learning the techniques (ADP, GA, and ES), coding, and  calibration are discussed in this 

section.  

It is difficult to quantify the amount of time required to learn these techniques, 

considering that the background knowledge for ADP is very different from that used in GA 

or ES. However, it is possible to say that prior experience with Markov decision processes 

and machine learning will help fully understanding ADP, whereas knowledge in search and 

optimization heuristics may help understanding GA and ES. Also, once the user understands 

GA, it is fairly straightforward to implement an ES algorithm, and vice versa.  

In terms of available literature and past experiences using each of these techniques, 

genetic algorithms are a good base point to start the implementation of ADP, whereas 

numerous past experiences with GA might be very useful for the development of the 

algorithm for a particular network. 

In terms of inputs, ADP requires a frequent estimation of the state of the system – 

which in this case was the queue length of each approach and the phase duration. For the 

computer modeling, this requirement could be satisfied by the addition of vehicle detectors at 

multiple points in each link, or alternatively by reading the queue status from the simulation 

in real time (through an API). Of these two methods, the former was adopted in this study. 

On the other hand, the GA and ES techniques evaluate the signal timings at the end of each 

simulation, and thus they do not require inputs from detectors. 
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Calibration may be needed for the three methods. For ADP, decreasing learning rates 

(α) are needed as well as a discount factor (γ) and a factor (λ) if eligibility traces are used. 

Lastly, the user needs to define a cost function that describes what actions are desired (such 

as the one used in this study). In general, standard values used in the literature are good 

starting points, but a sensitivity analysis may reveal improvements depending on the specific 

problem. Calibration of GA and ES is fairly easy. The reason is that both algorithms have an 

area in which the parameters yield an adequate search in the solution space (or “sweet spot”), 

and the ranges of these values are easy to find.      

 

6.6 Potential for field implementation 

There is true potential for these techniques in real-world applications. For ADP, the 

advantages of being suitable for real-time decision-making make it appropriate for traffic 

fluctuations and adaptive control. Also, with the advance of detection technologies and in-

vehicle equipment, knowing the state of the system at all times is possible. In fact, there are 

adaptive systems currently in operation that monitor the back of queue via video detection 

and determine the state of the system to make decisions. Additional algorithm development 

and testing under variable demands and in different network configurations are required for 

further analysis. 

As mentioned before, run time for GA and ES is significantly longer for real-time 

application. As a result, if GA or ES are coupled with a microscopic traffic simulation, they 

will not be able to determine the signal timing parameters in a reasonable time. Other 

strategies such as the use of mesoscopic simulators or even models at the macroscopic level 

could be explored to reduce the running time for field implementations.  
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CHAPTER 7.  QUEUE MANAGEMENT ANALYSIS 

Queue management was evaluated based on a series of MOPs that accounted for the 

efficient utilization of green time and the probability of queue overflows at the upstream 

intersection. This later MOP is similar to the analysis presented before on queues greater than 

80%, but it shows the amount of time that queues actually exceeded the link capacity by 

having a length greater than the link itself.  

On the other hand, the efficient utilization of green times was measured in terms of 

average vehicle headway during the green phase (in seconds) and analyzed based on the fact 

that processing vehicles at saturation headway (set at 1.9 seconds) is expected to result in an 

efficient operation. Moreover, processing vehicles at saturation headway does not only 

indicate that there is no “unused green”, but also shows that the downstream links have 

capacity to receive the departing vehicles. When the downstream link does not have capacity 

to receive the vehicles coming from the upstream link, the   departure headways would be 

less than the saturation headway; thus the departure rate is less than the saturation flow.  

A third MOP that was explored in queue management is related to the actual 

congestion level of the network on the entry and non-entry links, and also on the through and 

left-turn movements. This factor was called “queue occupancy” and was calculated as the 

ratio of the summation of all queues to the total length of the links, or  
) &//

) U//
 (where 6+is the 

queue length at link i, and V+ is the length of link i). Lastly, a fourth MOP shows the global 

congestion using network-level queue occupancy, which takes into account all links in the 

network together. This measure shows the degree of storage capacity utilization with respect 

to vehicles that are experiencing significant delay (in queue).  
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7.1 Case 1 - Network of 9 intersections in oversaturated conditions    

For the small network of 9 intersections, the green utilization efficiency in terms of 

average headway during the green phase is shown in Table 7.1. The highlighted cells show 

the most favorable methods within each of the three optimization methods, which are also 

those with the lowest vehicle headway. 

Table 7.1. Green Utilization Efficiency for Case 1 

 

In general, entry links had shorter vehicle headways than non-entry links, showing 

that the demand on these approaches was higher and the allocated green time processed a 

greater number of vehicles per unit of time. Comparing through movements to left turns, the 

ADP shows shorter headways for through vehicles than for left, and the opposite was true for 

ES and GA. It is noted that some of the average vehicle headways are shorter than the 

saturation headway (sat to 1.9 seconds) and this was the result of vehicles using more time of 

the yellow transition (to complete the movement) compared to the lost time at the beginning 

of the green phase. Thus, in practice for some movements the effective green was somewhat 

longer than the actual time allocated to the green phase.  

Overall, the three highlighted methods (ADP, GA, and ES) obtained vehicle 

headways at the network level that were very close to the saturation headway, indicating an 

effective utilization of the green time.  

Through Le ft Through Left Through Left

ADP 1.91 2.00 1.85 1.88 1.93 2.05

ADP ELIG 1.95 2.04 1.89 1.92 1.98 2.09

ADP MOD1 1.98 1.96 1.91 1.90 2.01 1.98

ADP MOD2 1.93 2.18 1.87 2.10 1.96 2.21

ADP MOD3 1.93 2.00 1.86 1.96 1.96 2.01

ES 1.97 1.80 1.89 1.73 2.01 1.82

ES10 2.19 1.75 2.03 1.75 2.26 1.75

ES20 2.21 1.76 2.02 1.75 2.28 1.77

GA 1.95 1.80 1.88 1.73 1.98 1.83

GA10 2.18 1.75 2.02 1.73 2.23 1.75

GA20 2.16 1.75 2.01 1.73 2.21 1.76

All Ne twork Entry Links Non-entry Links

Average Vehicle Headway during Green Phase (s)

Method

ADP

ES

GA
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A second MOP for the queue management analysis was the amount of time (in 

seconds) that the queues exceeded the length of the links and created blockages in the 

upstream intersections (or the entry points at the network edge).  A summary of this MOP is 

shown in Table 7.2.  

Table 7.2. Time Queue Exceeded Length of the Links for Case 1 

 

It is observed that the only points in the network in which the queue was longer than 

the links was at the entry links and more specifically at the left-turn lanes. However, this 

situation was detected in only a small portion of the 900-second runs and in all cases it 

represented less than 10% of the analysis period.  

The queue occupancy at the link level is shown in Table 7.3. Recall that these values 

were found by dividing the queue length by the length of the link where the queue starts.  

 

 

 

 

 

 

 

T hrough Left-turn T hrough Left-turn

ADP 0 0 0 0

ADP ELIG 0 0 0 0

MOD 1 0 0 0 0

MOD 2 0 0 0 0

MOD 3 0 0 0 0

ES 0 2 0 0

ES10 0 66 0 0

ES20 0 65 0 0

GA 0 3 0 0

GA10 0 78 0 0

GA20 0 68 0 0

Entry LinksMethod Non-entry Links

Ave rage  T ime  tha t Queue  Exceeded Length of Links (s)
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Table 7.3. Queue Occupancy for Case 1 

 

The methods that had the “best” green utilization efficiency within each group are 

highlighted. The queue occupation for entry and non-entry links was very different, as 

expected, with queues in the entry links that are at least double of those in the inner links. 

Note that on average the different methods did not load the links by more than 15% of their 

capacity for the through or left movements in the non-entry links. Here it is evident that the 

main difference between the overloading (ES10, ES20, GA10, and GA20) and the non-

overloading strategies for ES and GA was the length of the queues in the left turn lanes, 

which ultimately resulted in the former group having lower performance for the entire 

network.     

A summary of the network-level queue occupancy is shown in Table 7.4. There is a 

clear tendency for the algorithms not to allow the network to have queues longer than 20% of 

its storage capacity. For the strategies designed to overload the network, the global utilization 

factor increased on average 0.25-0.26. 

 

 

 

 

 

Through Left Through Left

ADP 0.47 0.18 0.12 0.14

ADP ELIG 0.49 0.18 0.12 0.14

ADP MOD1 0.55 0.15 0.13 0.08

ADP MOD2 0.49 0.15 0.12 0.07

ADP MOD3 0.48 0.18 0.11 0.10

ES 0.50 0.27 0.10 0.12

ES10 0.50 0.53 0.08 0.25

ES20 0.50 0.53 0.10 0.26

GA 0.48 0.29 0.11 0.12

GA10 0.47 0.54 0.09 0.25

GA20 0.47 0.53 0.10 0.25

ES

GA

Queue  Occupancy

Method Entry Links Non-entry Links

ADP
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Table 7.4. Network-level Queue Occupancy for Case 1 

 

7.2 Case 2 - Modified Springfield network in close-to-saturation conditions 

A similar set of MOPs to those described for the small network were also investigated 

for Cases 2 and 3 (modified Springfield network). First, the efficiency of green utilization for 

Case 2 is described in terms of the average vehicle headway during the green phase (Table 

7.5).  

Table 7.5. Green Utilization Efficiency for Case 2 

 

Vehicle headways for the four methods were above the saturation headway, but this 

was expected since the entering volumes were lower than the saturation level. In particular, 

headways for left turns are very high as the demand is much lower (10% of the total demand) 

in comparison to the through traffic and the movement is permitted, thus they share the same 

green times. Also, the undersaturated operation allowed more left turns to be processed using 

gaps in the opposing traffic. The presence of very short left-turn queues is later confirmed in 

this section by looking at the occupancy of the left turn pockets, which was very low.  

Average Max Min

ADP 0.20 0.22 0.18

ADP ELIG 0.21 0.23 0.19

MOD 1 0.20 0.22 0.19

MOD 2 0.19 0.20 0.17

MOD 3 0.19 0.20 0.18

ES 0.20 0.22 0.19

ES10 0.25 0.27 0.23

ES20 0.26 0.28 0.24

GA 0.21 0.22 0.19

GA10 0.25 0.27 0.22

GA20 0.25 0.27 0.23

Network-leve l Queue  Occupancy

Method

Through Left Through Left Through Left

ADP 2.12 21.26 2.10 21.84 2.13 21.16

MOD ADP 2.21 21.91 2.15 22.18 2.23 21.86

GA 2.27 20.27 2.21 16.92 2.28 20.88

ES 2.26 22.16 2.18 23.31 2.29 21.95

Method

Average  Vehicle  Headway during Green Phase  (s)

All Network Entry Links Non-entry Links
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In this particular case, queue management is not expected to be as critical in terms of 

green efficiency, as with the back of the queues, which are analyzed next, in Table 7.6.  

Table 7.6. Time Queue Exceeded Length of the Links for Case 2 

 

From Table 7.6 it is noted that at some points of the analysis period both the through 

movements and the left-turns could have created blockages. These temporary blockages were 

more prolonged at non-entry links, and more specifically at intersections 5 and 6, where 

three-lane one-way streets intersected. Additional analysis at the link level showed that 

another critical location was the westbound traffic at intersection 1 and the southbound traffic 

at intersection 2 (both of them three-lane, one-way streets).  

Queue occupancy was also obtained for Case 2, as shown in Table 7.7. The queue 

length with respect to the length of the links was significantly lower than in Case 1 (given the 

undersaturated conditions) even though the links were significantly shorter. Results from 

Table 7.7 are in accordance with Table 7.6, showing that low average queue resulted in low 

probability of blockages. 

Table 7.7. Queue Occupancy for Case 2 

 

Thenetwork-level queue occupancy for the four methods is shown in Table 7.8. 

Results indicate that on average from 14% to 17% of the network length was composed of 

queued vehicles, with maximum values form a single run below 30%.  

Through Left-turn Through Left-turn

ADP 0.2 0.3 4.5 0.9

MOD ADP 4.4 1.0 61.4 1.5

GA 7.2 6.8 32.6 8.0

ES 4.5 5.5 30.7 9.9

Method Entry Links Non-entry Links

Average  T ime  tha t Queue  Exceeded Length of Links (s)

Through Left Through Left

ADP 0.18 0.04 0.20 0.04

MOD ADP 0.23 0.05 0.21 0.04

GA 0.25 0.06 0.14 0.07

ES 0.23 0.05 0.21 0.04

Method

Queue  Occupancy

Entry Links Non-entry Links
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Table 7.8. Network-level Queue Occupancy for Case 2 

 

    

7.3 Case 3 - Modified Springfield network in oversaturated conditions 

This case was expected to provide distinctive details on the operating strategies using 

the four different methods. The oversaturated conditions and short spacing between 

intersections, in addition to a variety of lane configurations, provide a very challenging 

scenario for the algorithms.  

The first queue management MOP is the efficient utilization of green time, expressed 

as the average vehicle headway, as shown in Table 7.9. It shows that some efficiency was 

lost in this case compared to the undersaturated case. This may seem counterintuitive at first 

because higher demand should produce less unused green, but it was mainly the result of the 

following four situations: 1) blockages due to queue overflow in the crossing street, which 

prevented vehicles from reaching the downstream intersection; 2) extending green to process 

long queues and prevent blockages, at the cost of platoon dispersion and lower efficiency; 3) 

disparity of volume demands on two-way roadways, generating unused green in the direction 

with lower traffic; and 4) the priority given to streets with greater number of lanes, as they 

could process more vehicles, but also at the cost of platoon dispersion and greater headways.  

Table 7.9. Green Utilization Efficiency for Case 3 

 

Average Max Min

ADP 0.15 0.17 0.14

MOD ADP 0.17 0.27 0.14

GA 0.14 0.26 0.11

ES 0.17 0.21 0.15

Method
Ne twork-leve l Queue  Occupancy

Through Left Through Left Through Left

ADP 2.33 10.44 2.24 10.04 2.35 10.51

MOD ADP 2.51 10.91 2.39 10.28 2.55 11.02

GA 2.72 12.92 2.28 11.32 2.85 13.21

ES 2.59 12.56 2.19 10.93 2.71 12.85

Method

Ave rage  Vehicle  Headway during Green Phase  (s)

All Network Entry Links Non-entry Links
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The amount of time that the links had queues longer than the storage capacity is 

shown in Table 7.10. As expected, on average both the entry and non-entry links experienced 

some blockages, which most of the time did not result in gridlocks. Note that longer 

blockages were found at the entry links with GA and ES, but the opposite was true for the 

non-entry links where blockages were longer in ADP and modified ADP. This is also 

evidence of a key difference in the results from these methods, as GA and ES did perform a 

more intensive metering at some intersections, and ADP allowed more vehicles inside of the 

network. 

Table 7.10. Time Queue Exceeded Length of the Links for Case 3 

 

The queue occupancy of the links was grouped by entry and non-entry links, as well 

as by the type of movement, as it is shown in Table 7.11. A similar picture to that described 

in the previous MOPs is also found from Table 7.11. The through entry links with ADP and 

MOD ADP were slightly less congested than those in GA and ES, with average queues as 

long as 70% of the link capacity. On the other hand, non-entry through links with ADP and 

MOD ADP reached about 40% capacity inside the network, compared to close to 30% with 

GA and ES.  

Table 7.11. Queue Occupancy for Case 3 

 

Left-turning links were highly congested with queues close to 70% of the link storage 

capacity even inside the network. In fact, a more detail analysis of the queues at the link level 

Through Left-turn Through Left-turn

ADP 73.8 572.5 233.5 465.0

MOD ADP 89.5 603.8 305.4 483.3

GA 113.8 615.8 215.0 542.1

ES 107.8 580.5 150.8 523.2

Method

Average  T ime  tha t Queue  Exceeded Length of Links (s)

Entry Links Non-entry Links

Through Left Through Left

ADP 0.67 0.71 0.41 0.66

MOD ADP 0.70 0.74 0.40 0.66

GA 0.73 0.80 0.31 0.72

ES 0.72 0.73 0.27 0.68

Method

Queue  Occupancy

Entry Links Non-entry Links
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showed that the majority of the top 10% most congested links for all four strategies were left-

turns, and in particular those in intersections 15, 16, 19, and 20. Recall that at this location all 

four approaches had left-turning lanes and that all of them operated on a “permitted” basis.  

Lastly, the network-level queue occupancy is shown in Table 7.12. Even though the 

network is oversaturated, the length of queues in all the links together was on average lower 

than 50% of the storage capacity of the network. These results are very different from those 

in undersaturated conditions, where the global storage utilization factor was lower than 20%, 

and may be a first indication of an upper bound for this factor in this particular network.   

Table 7.12. Network-level Queue Occupancy for Case 3 

 

For queue management purposes, all four measures mentioned in this Chapter 

provide important information for understanding the operation of a set of signal timings. 

Green utilization efficiency and queue occupancy should be used simultaneously, not as 

separate factors. If the green time is not efficiently used it is highly likely for the queues in 

the links to start growing and eventually blocking an upstream intersection, and if this 

happens in combination with high level of link occupancies the network is likely to reduce 

the number of vehicles that can be processed.  

One expects that number of trips in Case 3 to be higher than that in Case 2 since 

traffic demand in Case 3 was higher; However, results revealed that the number of trips 

completed in Case 2 was higher than that for Case 3, and this can be observed in the green 

utilization efficiency and queue occupancy. By increasing traffic demand from 750 vehicle 

per hour per lane to 1000 vehicle per hour per lane, queues started to grow in the network 

and occasionally blocked upstream intersections. This resulted in a less efficient use of green 

time as reflected by a greater green utilization factor (headways greater than the saturation 

headway – set at 1.9 seconds). In addition, greater demand increased the queue occupancy of 

Average Max Min

ADP 0.46 0.51 0.40

MOD ADP 0.47 0.53 0.42

GA 0.40 0.47 0.35

ES 0.38 0.44 0.33

Method
Network-leve l Queue  Occupancy
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the network. This suggests that allowing more vehicles in the network may not be the best 

action for all traffic conditions. In fact, all vehicles could enter the network up to a certain 

traffic demand; however, if more vehicles are allowed in the network beyond that point, the 

network may not be able to process them. This may result in a decrease in number of trips 

completed, and in an increase in average travel delay both inside the network and at the 

borders. 
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CHAPTER 8.  CONCLUSIONS 

Three methods were used to find the optimal signal timings for two transportation 

networks: Genetic Algorithms (GA), Evolution Strategies (ES), and Approximate Dynamic 

Programming (ADP). While GA and ES are meta-heuristics for searching the solution space, 

ADP tries to learn the best actions after knowing the state of the system. ADP has potential 

for real-time implementation, whereas GA and ES are more suitable for development and 

evaluation of various strategies that can be selected in real-time traffic control.  

The formulations from the three methods were described, including variations that 

explored different approximations to the problem solution. Two case study networks were 

used. The first one was a small hypothetical network of 9 oversaturated intersections. On this 

network, GA, ES methods were use to find optimal solutions for three network loading 

conditions (no overloading, 10%, and 20% overloading). Also two variations of ADP (no 

eligibility traces and eligibility traces) and three modified ADP algorithms were tested for the 

small network. Results indicated that GA and ES with no overloading and two variations of 

ADP and their modifications found signal timings that resulted in similar network 

performances. For these four cases, the average delay was between 215 and 226 seconds per 

vehicle. The ADP Modification 3 resulted in the lowest average delay and ADP with 

eligibility traces resulted in the highest. System throughput was also similar and ranged from 

2095 vehicles (ES with 20% overloading) to 2320 vehicles (ADP with no eligibility traces). 

When the network was overloaded by 10% or 20%, the average delay per vehicle was 

significantly increased while system throughput was at the same level or slightly lower.  
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In comparison, the signal timings (for the small network) found by the best strategies 

were in some cases significantly different from each other. The strategies proposed by GA 

and ES were similar and resulted in cycle lengths that fluctuated between 78 and 98 seconds, 

with identical averages of 85 seconds. On the other hand, the ADP strategies (with and 

without eligibility traces), suggested cycle lengths of 85 to 107 seconds when left turns 

phases were displayed and cycle lengths of 50 to 63 seconds without left turn phases.   

For the modified Springfield network, when the volume at the entry links was 750 

vehicles per hour per lane GA (70.3 s) and ADP (75.8 s) found signal timings that resulted in 

shorter average delay than ES (78.7 s) and modified ADP (85.62 s). Network throughput for 

GA (4987 vehicles), ES (5005 vehicles), and ADP (4981 vehicles) was similar and slightly 

higher than that for modified ADP (4746 vehicles). Higher throughput and lower delay for 

GA and ES was expected since they were optimizing the offsets in addition to signal timing 

parameters and as a result coordinated several intersections of the network. ADP on the other 

hand was responding to the current network assuming the intersections were not 

interconnected. The signal coordination resulted in less number of stops in the network and 

increased average speed. Thus, average number of stops for GA (2.0 stops) and ES (2.4 

stops) were fewer than that for ADP (3.0) and its modification (3.3). In addition, GA (14.0 

mph), ES (12.9 mph), and ADP (13.1) resulted in a higher average speed in the network than 

modified ADP (12.1 mph). 

When the entry volumes were set to 1000 in the modified Springfield network, GA 

and ES could coordinate some of the signals of the network. As a result, average delay inside 

the network for GA (144 s) and ES (137 s) was shorter than that for ADP (159 s) and 

modified ADP (171 s). However, GA and ES metered vehicles at the entry links more than 

ADP and its modification and did not let too many vehicles enter the network. This resulted 

in a larger average delay inside and outside of the network for GA (227 s) and ES (222 s) 

compared to ADP (187 s) and modified ADP (203 s). Since GA and ES let fewer number of 

vehicles in the network they could process less vehicles and network throughput for ADP 

(4718 vehicles) was more than that for GA (4302 vehicles) and ES (4388 vehicles). On the 

other hand, since inside the network was not that congested, the average number of stops was 

lower for GA (4.2 stops) and ES (4.1 stops) compared to ADP (5.1 stops) and modified ADP 
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(5.1 stops), and average speed was higher (8.2 mph and 8.6 mph for GA and ES, 7.5 mph and 

7.0 for ADP and modified ADP, respectively) 

For queue management purposes, all four measures mentioned in Chapter 7 provide 

important information for understanding the operation of a set of signal timings. However, it 

is recommended to use the green utilization efficiency and queue occupancy simultaneously, 

not as separate factors. If the green time is not efficiently used it is highly likely for the 

queues in the oversaturated links to start growing and eventually blocking an upstream 

intersection, and if this happens in combination with high level of link occupancies the 

network is likely to reduce the number of vehicles that can be processed.  

The queue management analysis showed that to get the best network performance in 

the oversaturated condition, the green utilization efficiency for protected movements 

(through or left-turns) should be close to saturation headway (1.9 seconds in this study).  

In addition, it was found that letting all the vehicles enter the network may not be the 

best action for all traffic conditions. Vehicles could enter the network up to a certain traffic 

demand, but beyond this point, the network may not be able to process them and it could 

result in blockages or gridlocks. This may in turn result in a decrease in the number of trips, 

and an increase in average travel delay both inside the network and at the borders. Therefore, 

whenever traffic demand is beyond this optimal level, the additional traffic demand should be 

metered to prevent a decrease in the network throughput.      

Future work to improve the methods described in the report, particularly for real-

world applications, is needed. Several topics can be further studied for advancing the state-

of-the-practice in traffic signal control, including: 1) reduction in the required running time 

for GA and ES, 2) improvements in the algorithm for ADP regarding the state representation 

and the learning functions, 3) the long term performance of the algorithms, and 4) extended 

capabilities such as communication between intersection and augmented set of constraints to 

account for known issues in real-world scenarios.            
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